La Variabilidad de la Frecuencia Cardíaca (VFC) como medida Objetiva de la Atención Sostenida en el Salón de Clase
Contenido principal del artículo
Resumen
El objetivo que se propone en el presente informe es probar la hipótesis teórica de que el tiempo de atención sostenida en los estudiantes en el salón de clase puede ser medida por la respuesta autonómica de la VFC. 10 sujetos participaron del experimento. La VFC fue observada por medio del análisis de series temporales en segmentos de cinco (5) minutos hasta completar la ventana de observación para medias móviles simples de 60 minutos. Se analizaron las series RR en los dominios de tiempo, de frecuencia e índices no lineares.
Descargas
Los datos de descargas todavía no están disponibles.
Detalles del artículo
Cómo citar
Rodríguez-De Ávila, U. ., Campos-Braga, I. ., Paba-Barbosa, C. ., Leocadio-Miguel, M. A. ., & Fontanelle-Araujo, J. . (2019). La Variabilidad de la Frecuencia Cardíaca (VFC) como medida Objetiva de la Atención Sostenida en el Salón de Clase . Duazary, 16(2), 395–402. https://doi.org/10.21676/2389783X.3201
Número
Sección
Artículo de investigación científica y tecnológica
No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
Citas
1. Nobre AC, Kastner S. The Oxford Handbook of Attention. 2014; Oxford: Oxford University Press
2. Yoo K, Rosenberg M, Hsu W, Zhang S, Li C, Scheinost D, Constable T, Chun M. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. NeuroImage. 2018; 167 (2018): 11–22. https://doi.org/10.1016/j.neuroimage.2017.11.010
3. Rohr C, Arora A, Cho I, Katlariwala P, Dimond D, Dewey D, Bray S. Functional network integration and attention skills in young children. Developmental Cognitive Neuroscience. 2018; 30 (2018): 200–211. https://doi.org/10.1016/j.dcn.2018.03.007
4. Onley A, Risko E, D`mello S, Graesser A. Attention in Educational Contexts: The Role of the Learning Task in Guiding Attention. In The Handbook of Attention, eds Fawcett, J., Risko, E. & Kingstone, A. (London: Mit Press). 2015: 623-641.
5. Hernández A. Procesos Psicológicos Básicos. (1ra ed.). 2014. Mexico: Red Tercer Milenio.
6. Bunce D., Flens E. Neiles K. How Long Can Students Pay Attention in Class? A Study of Student Attention Decline Using Clickers. Journal of Chemical Education. 2010; 87(12): DOI:10.1021/ed100409p
7. Herrera J, Cid N, Pinilla C, Quezada S, Santana. P. Atención selectiva, atención sostenida, inhibición y flexibilidad cognitiva en niñas y adolescentes de 12 a 14 años con TDAH predominio de falta de atención. (1ra Ed). 2016; Concepción: Universidad Católica De La Santísima. http://repositoriodigital.ucsc.cl/bitstream/handle/25022009/1161/Nicole%20Cid%20Rivera.pdf?sequence=1&isAllowed=y
8. Benjamin LTJr. Lecturing. In S. F. Davis, W. Buskist (Eds.), The teaching of psychology: Essays in honor of Wilbert J. McKeachie and Charles L. Brewer (2002; pp. 57–67). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
9. McKeachie WJ, Svinicki M. McKeachie’s teaching tips: Strategies, research, and theory for college and university teachers (2006; 12th ed.). Boston: Houghton-Mifflin.
10. Wilson K, Korn JH. Attention During Lectures: Beyond Ten Minutes. Teaching of Psychology. 2007; 34(2): 84-89. https://doi.org/10.1080/00986280701291291
11. Chang YC, Huang SL. The influence of attention levels on psychophysiological responses. International Journal of Psychophysiology. 2012; 86(2012): 39–47. http://dx.doi.org/10.1016/j.ijpsycho.2012.09.001
12. Griffiths K, Quintana D, Hermens D, Spooner C, Tsang T, Clarke S, Kohn M. Sustained attention and heart rate variability in children andadolescents with ADHD. Biological Psychology. 2017; 124 (2017): 11–20. http://dx.doi.org/10.1016/j.biopsycho.2017.01.004
13. Shaffer F, Venner J. Heart rate variability anatomy and physiology. Biofeedback. 2013; 41(2013): 13–25. http://doi:10.5298/1081-5937-41.1.05
14. Aranda C, De la Cruz B, Naranjo J. Effects of different automatic filters on the analysis of heart rate variability with Kubios HRV software. Arch Med Deporte. 2017; 34(4): 196-200. http://archivosdemedicinadeldeporte.com/articulos/upload/or02_aranda_ingles.pdf
15. Porges SW. Orienting in a defensive world: mammalian modifications ofour evolutionary heritage: a polyvagal theory. Psychophysiology. 1995; 32 (1995), 301–318. http://dx.doi.org/10.1111/j.1469-8986.1995.tb01213.x.
16. Porges SW. The polyvagal theory: phylogenetic substrates of a social nervous system. International Journal of Psychophysiology. 2001; 42 (2001): 123-146. http://dx.doi.org/10.1016/s0167-8760(01)00162-3.
17. Porges SW. The Polyvagal Perspective. Biol Psychol. 2007; 74 (2): 116–143. http://doi.org/10.1016/j.biopsycho.2006.06.009.
18. Fonfría A, Poy R, Segarra P, López R, Esteller A, Ventura C, et al. Variabilidad de la tasa cardíaca (HRV) y regulación emocional. FÒRUM DE RECERCA. 2011; 16 (2011): 903-013. http://hdl.handle.net/10234/77387
19. Holzman J, Bridgett D. Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience and Biobehavioral Reviews. 2017; 74 (2017): 233–255. http://doi:10.1016/j.neubiorev.2016.12.032
20. Capuana LJ, Dwyan J, Tays WJ, Elmers JL, Witherspoon R, Segalowitz S. Factors influencing the role of cardiac autonomic regulation in theservice of cognitive control. Biol. Psychol. 2015; 102 (2014): 88–97. http://dx.doi.org/10.1016/j.biopsycho.2014.07.015.
21. Yentes J, Hunt N, Schmid K, Kaipust J, McGrath D, Stergiou N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets". Journal Articles. 2013; Paper 44. http://doi:10.1007/s10439-012-0668-3
22. Pincus SM. Approximate entropy as a measure of system complexity. Proc Nati Acad Sci. 1991; 88 (1991): 2297-2301. https://www.ncbi.nlm.nih.gov/pubmed/11607165
23. Pincus SM, Gladstone IM, Ehrenkranz RA. Regularity statistic for medical data analysis. Journal of Clinical Monitoring. 1991; 7(4): 335-345. https://doi.org/10.1007/BF01619355
24. Dikker S, Wan L, Davidesco I, Kaggen L, Oostrik M, McClintock J., … et al. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Current Biology. 2017; 27(2017): 1–6. http://dx.doi.org/10.1016/j.cub.2017.04.002
2. Yoo K, Rosenberg M, Hsu W, Zhang S, Li C, Scheinost D, Constable T, Chun M. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. NeuroImage. 2018; 167 (2018): 11–22. https://doi.org/10.1016/j.neuroimage.2017.11.010
3. Rohr C, Arora A, Cho I, Katlariwala P, Dimond D, Dewey D, Bray S. Functional network integration and attention skills in young children. Developmental Cognitive Neuroscience. 2018; 30 (2018): 200–211. https://doi.org/10.1016/j.dcn.2018.03.007
4. Onley A, Risko E, D`mello S, Graesser A. Attention in Educational Contexts: The Role of the Learning Task in Guiding Attention. In The Handbook of Attention, eds Fawcett, J., Risko, E. & Kingstone, A. (London: Mit Press). 2015: 623-641.
5. Hernández A. Procesos Psicológicos Básicos. (1ra ed.). 2014. Mexico: Red Tercer Milenio.
6. Bunce D., Flens E. Neiles K. How Long Can Students Pay Attention in Class? A Study of Student Attention Decline Using Clickers. Journal of Chemical Education. 2010; 87(12): DOI:10.1021/ed100409p
7. Herrera J, Cid N, Pinilla C, Quezada S, Santana. P. Atención selectiva, atención sostenida, inhibición y flexibilidad cognitiva en niñas y adolescentes de 12 a 14 años con TDAH predominio de falta de atención. (1ra Ed). 2016; Concepción: Universidad Católica De La Santísima. http://repositoriodigital.ucsc.cl/bitstream/handle/25022009/1161/Nicole%20Cid%20Rivera.pdf?sequence=1&isAllowed=y
8. Benjamin LTJr. Lecturing. In S. F. Davis, W. Buskist (Eds.), The teaching of psychology: Essays in honor of Wilbert J. McKeachie and Charles L. Brewer (2002; pp. 57–67). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
9. McKeachie WJ, Svinicki M. McKeachie’s teaching tips: Strategies, research, and theory for college and university teachers (2006; 12th ed.). Boston: Houghton-Mifflin.
10. Wilson K, Korn JH. Attention During Lectures: Beyond Ten Minutes. Teaching of Psychology. 2007; 34(2): 84-89. https://doi.org/10.1080/00986280701291291
11. Chang YC, Huang SL. The influence of attention levels on psychophysiological responses. International Journal of Psychophysiology. 2012; 86(2012): 39–47. http://dx.doi.org/10.1016/j.ijpsycho.2012.09.001
12. Griffiths K, Quintana D, Hermens D, Spooner C, Tsang T, Clarke S, Kohn M. Sustained attention and heart rate variability in children andadolescents with ADHD. Biological Psychology. 2017; 124 (2017): 11–20. http://dx.doi.org/10.1016/j.biopsycho.2017.01.004
13. Shaffer F, Venner J. Heart rate variability anatomy and physiology. Biofeedback. 2013; 41(2013): 13–25. http://doi:10.5298/1081-5937-41.1.05
14. Aranda C, De la Cruz B, Naranjo J. Effects of different automatic filters on the analysis of heart rate variability with Kubios HRV software. Arch Med Deporte. 2017; 34(4): 196-200. http://archivosdemedicinadeldeporte.com/articulos/upload/or02_aranda_ingles.pdf
15. Porges SW. Orienting in a defensive world: mammalian modifications ofour evolutionary heritage: a polyvagal theory. Psychophysiology. 1995; 32 (1995), 301–318. http://dx.doi.org/10.1111/j.1469-8986.1995.tb01213.x.
16. Porges SW. The polyvagal theory: phylogenetic substrates of a social nervous system. International Journal of Psychophysiology. 2001; 42 (2001): 123-146. http://dx.doi.org/10.1016/s0167-8760(01)00162-3.
17. Porges SW. The Polyvagal Perspective. Biol Psychol. 2007; 74 (2): 116–143. http://doi.org/10.1016/j.biopsycho.2006.06.009.
18. Fonfría A, Poy R, Segarra P, López R, Esteller A, Ventura C, et al. Variabilidad de la tasa cardíaca (HRV) y regulación emocional. FÒRUM DE RECERCA. 2011; 16 (2011): 903-013. http://hdl.handle.net/10234/77387
19. Holzman J, Bridgett D. Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience and Biobehavioral Reviews. 2017; 74 (2017): 233–255. http://doi:10.1016/j.neubiorev.2016.12.032
20. Capuana LJ, Dwyan J, Tays WJ, Elmers JL, Witherspoon R, Segalowitz S. Factors influencing the role of cardiac autonomic regulation in theservice of cognitive control. Biol. Psychol. 2015; 102 (2014): 88–97. http://dx.doi.org/10.1016/j.biopsycho.2014.07.015.
21. Yentes J, Hunt N, Schmid K, Kaipust J, McGrath D, Stergiou N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets". Journal Articles. 2013; Paper 44. http://doi:10.1007/s10439-012-0668-3
22. Pincus SM. Approximate entropy as a measure of system complexity. Proc Nati Acad Sci. 1991; 88 (1991): 2297-2301. https://www.ncbi.nlm.nih.gov/pubmed/11607165
23. Pincus SM, Gladstone IM, Ehrenkranz RA. Regularity statistic for medical data analysis. Journal of Clinical Monitoring. 1991; 7(4): 335-345. https://doi.org/10.1007/BF01619355
24. Dikker S, Wan L, Davidesco I, Kaggen L, Oostrik M, McClintock J., … et al. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Current Biology. 2017; 27(2017): 1–6. http://dx.doi.org/10.1016/j.cub.2017.04.002