Intropica
Maize responses that indicate that the Paclobutrazol induces higher genetic activity
PDF (Español (España))
HTML (Español (España))

How to Cite

Velázquez- Alcaraz, T. D. J., Díaz-Valdés, T., Ayala-Tafoya, F., Yáñez Juárez, M. G., Partida- Ruvalcaba, L., Medina López, R., & López-Orona, C. A. (2019). Maize responses that indicate that the Paclobutrazol induces higher genetic activity. Intropica, 14(1), 51–59. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/2765

Abstract

The aim of the research was to determine the effect of Paclobutrazol (PBZ) in the genetic activity of the maize cultivars Puma, 30P49 and DK2020, through the evaluation of response variables greenness, height of plant, stem diameter, leaf length and width, weight and volume of 1000 grains, protein content and grain yield per hectare. The experimental used was randomized complete blocks design with five replicates in two experiments performed during the 2008-2009 and 2009-2010 agricultural cycles; in the first cycle plots of four row of 40 m of long were used, where 200 kg of N ha-1 were applied; while in the second the length of plots was 5.0 m and fertilized with 250 kg of N ha-1. The doses were 150, 300 and 450 mg of PBZ L-1 of water until exposure of the fourth, sixth and eighth true leaf, respectively. The results indicated that PBZ induced greater genetic activity, since the synthesis of proteins and other components of cells, tissues and organs is a process that depends on the transcription of DNA messages in mRNA, amino acid synthesis, the transport of amino acids by tRNA and the binding of amino acids by the enzyme Peptidyl Transferase, which leads to the translation of messages into structural and active proteins (enzymes), to form more cells and substances that constitute them and consequently , cause more grain yield per hectare.
PDF (Español (España))
HTML (Español (España))

References

Burch, P.L., Wells, R.H. y Kline W.N. 1996. Red maple and silver maple growth evaluated 10 years after application of paclobutrazol tree growth regulator. Journal Arboriculture 22: 61-66.

Conn, E.E. y Stumpf, P.K. 1980. Bioquímica Fundamental. Editorial Limusa, S. A. México, D. F.

Ferreira, V., Szpiniak, B. y Grassi, E. 2005. Manual de Genética, Tomo I. Universidad Nacional de Río Cuarto, Córdoba.

Freifelder, D. 1988. Fundamentos de Biología Molecular. Editorial Acribia S. A. Zaragoza.

Gopi, R., Abdul, J. Ch., Divyanair, V., Azooz, M.M. y Panneerselvam, R. 2009. Effect of paclobutrazol and ABA on total phenol contents in different parts of Holy Basil (Ocimum sanctum). Academic. Journal of Plant Sciences 2(2): 97-101.

Goulston, G.H. y Shearing, S.J. 1985. Review of the effects of Paclobutrazol on ornamental pot plants. Acta Horticulturae 167: 339-348.

Iremiren, G.O., Adewumi, P.O., Aduloju, S.O. y Ibitoye, A.A. 2002. Effects of Paclobutrazol and nitrogen fertilizer on the growth and yield of maize. Journal of Agricultural Science 128: 425-430.

Lea, P.J. y Leegood, R.C. 1993. Plant Biochemistry and Molecular Biology. Editorial John Wiley & Sons, New York.

LeCain, D.R., Schekel, K.A. y Walple, R.L. 1986. Growth retarding effects of paclobutrazol on weeping fig. HortScience 21: 1150-1152.

Loffler, C.M., Rauch, T.L. y Busch, R.H. 1985. Grain and plant protein relationships in hard red spring wheat. Crop Science 25: 521-524.

Nizam, K. y Te-chato, S. 2009. Optimizing of root induction in oil palm plantlets for acclimatization by some potent plant growth regulators (PGRs). Journal of Agricultural Technology 5(2): 371-383.

Ochoa, J., Franco, J.A., Bañón, S. y Fernández, J.A. 2009. Distribution in plant, substrate and leachate of Paclobutrazol following application to containerized Nerium oleander L. seedlings. Spanish Journal of Agricultural Research 7(3): 621-628.

Partida, R.L., Velázquez, A.T. de J., Acosta, V.B., Ayala, T.F., Díaz, V.T., Inzunza, C.J.F. y Cruz, O.J.E. 2007. Paclobutrazol y crecimiento de raíz y parte aérea de plántulas de pimiento morrón y berenjena. Revista Fitotecnia Mexicana 30(2): 145-149.

Possingham, J.V. 1980. Plastid replication and development in the life cycle of higher plants. Annual Review of Plant Physiology 31: 113-129.

Salisbury, F.B. y Ross, C.W. 2000. Fisiología de las Plantas. Paraninfo Thomson Learning, Madrid, España.
SAS Institute. 1996. SAS User’s Guide: Basics, 5th Edition. SAS Institute Inc., Cary, N. C.

Sopher, C.R., Król, M., Huner, N.PA, Moore, A.E. y Fletcher R.A. 1999. Chloroplastic changes associated with Paclobutrazol-induced stress protection in maize seedlings. Canadian Journal Botany 77(2): 279–290.

Strickberger, M.W. 1978. Genética. Ediciones Omega, S. A. Imprenta Juvenil S. A. Barcelona.
Tadao, A., Kin, M.Y., Nagata, N., Yamagishi, K., Takatsuto, S., Fujioka, S., Murofushi, N., Yamaguchi, I. y Yoshida S. 2000. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiology 123(1): 93-99.

Velázquez, A.T. de J., Partida, R.L., Acosta, V.B. y Ayala, T.F. 2008. Producción de plantas de tomate y Chile aplicando Paclobutrazol al follaje. Universidad y Ciencia 24(1): 21-28.

Wilkinson, R.I. y Richards, D. 1988. Influence of Paclobutrazol on growth and flowering of Camellia x williamsii. HortScience 23(2): 359-360.

Wood, B.W. 1988. Paclobutrazol suppresses vegetative growth of large pecan trees. HortScience 23(2): 341-343.

Downloads

Download data is not yet available.