Fisiopatología de los odontoblastos: una revisión
PDF
XML

Palabras clave

odontoblastos
dentina
odontogénesis
fisiopatología

Cómo citar

Simancas-Escorcia, V. H. (2019). Fisiopatología de los odontoblastos: una revisión. Duazary, 16(3), 87–103. https://doi.org/10.21676/2389783X.2971

Resumen

Los odontoblastos son células post-mitóticas de origen mesenquimal dispuestas en forma de palizada en la periferia de la pulpa dental y responsables de la formación de la dentina. Los odontoblastos derivan de la cresta neural y su diferenciación es la consecuencia de las interacciones epitelio-mesénquima entre las células de la papila dental y el epitelio dental interno. Este trabajo tiene como objetivo revisar los aspectos fisiológicos y patológicos de los odontoblastos, comprendiendo su origen, mecanismos de diferenciación y propiedades funcionales. Se realizó una búsqueda electrónica de literatura desde el año 2000 hasta Febrero de 2018, seleccionando 2889 artículos, de los cuales 52 artículos fueron analizados y discutidos. Los resultados exponen el origen, etapas y los factores relacionados con la diferenciación odontoblástica, junto con los aspectos principales de la organización estructural y funciones que desempeñan los odontoblastos. Esta revisión demuestra mediante la evidencia científica actual como los estudios concernientes a los odontoblastos se focalizan en comprender los mecanismos en la formación de la dentina reparativa, la respuesta inmunitaria y su rol en los procesos de inflamación y dolor. Trabajos futuros deberán esclarecer las diferentes señales involucradas en los procesos fisiopatológicos celulares y moleculares llevados a cabo por los odontoblastos. 
https://doi.org/10.21676/2389783X.2971
PDF
XML

Citas

Chai Y, Jiang X, Ito Y, Bringas P, Han J, Rowitch DH, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000 Apr;127(8):1671–9. Disponible en: http://dev.biologists.org.gate2.inist.fr/content/127/8/1671.long

Linde A, Goldberg M. Dentinogenesis. Crit Rev Oral Biol Med. 1993;4(5):679–728. Doi: https://doi.org/10.1177/10454411930040050301

Sasaki T, Garant PR. Structure and organization of odontoblasts. Anat Rec. 1996 Jun;245(2):235–49. Doi: https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<235::AID-AR10>3.0.CO;2-Q

Ruch JV. Session I: Development, Form, and Function of Odontoblasts — CD. Torneck, Chairman: Odontoblast Differentiation and the Formation of the Odontoblast Layer. J Dent Res. 1985 Apr 1;64(4):489–98. Doi : https://doi.org/10.1177/002203458506400402

Goldberg M, Smith AJ. Cells and Extracellular Matrices of Dentin and Pulp: A Biological Basis for Repair and Tissue Engineering. Crit Rev Oral Biol Med. 2004 Jan 1;15(1):13–27. Doi: https://doi.org/10.1177/154411130401500103

Lesot H, Lisi S, Peterkova R, Peterka M, Mitolo V, Ruch JV. Epigenetic signals during odontoblast differentiation. Adv Dent Res. 2001 Aug;15:8–13. Doi: https://doi.org/10.1177/08959374010150012001

Lee D-S, Yoon W-J, Cho ES, Kim H-J, Gronostajski RM, Cho M-I, et al. Crosstalk between nuclear factor I-C and transforming growth factor-β1 signaling regulates odontoblast differentiation and homeostasis. PLoS ONE. 2011;6(12):e29160. Doi: https://doi.org/10.1371/journal.pone.0029160

Haruyama N, Thyagarajan T, Skobe Z, Wright JT, Septier D, Sreenath TL, et al. Overexpression of transforming growth factor-beta1 in teeth results in detachment of ameloblasts and enamel defects. Eur J Oral Sci. 2006;114 S1:30–4. Doi: https://doi.org/10.1111/j.1600-0722.2006.00276.x

Li S, Pan Y. Immunolocalization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-SMAD2/3 during the postnatal tooth development and formation of junctional epithelium. Ann Anat. 2018 Mar;216:52–9. Doi: https://doi.org/10.1016/j.aanat.2017.10.005

Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST, et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development. 2004 May;131(10):2257–68. Doi: 10.1242/dev.01125

Taşlı PN, Aydın S, Yalvaç ME, Sahin F. Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells. Appl Biochem Biotechnol. 2014 Mar;172(6):3016–25. Doi: 10.1007/s12010-013-0706-0

Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell. 1993 Oct 8;75(1):45–58. Doi: https://doi.org/10.1016/S0092-8674(05)80083-2

Nakashima M. Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and -4. J Dent Res. 1994 Sep;73(9):1515–22. Doi: https://doi.org/10.1177/00220345940730090601

Rebouças EL, Costa JJN, Passos MJ, Silva AWB, Rossi RODS, van den Hurk R, et al. Expression levels of mRNA for insulin-like growth factors 1 and 2, IGF receptors and IGF binding proteins in in vivo and in vitro grown bovine follicles. Zygote. 2014 Nov;22(4):521–32. Doi: https://doi.org/10.1017/S0967199413000166

Shinohara Y, Tsuchiya S, Hatae K, Honda MJ. Effect of vitronectin bound to insulin-like growth factor-I and insulin-like growth factor binding protein-3 on porcine enamel organ-derived epithelial cells. Int J Dent. 2012;2012:386282. Doi: https://doi.org/10.1155/2012/386282

Joseph BK, Savage NW, Young WG, Gupta GS, Breier BH, Waters MJ. Expression and regulation of insulin-like growth factor-I in the rat incisor. Growth Factors. 1993;8(4):267–75. Doi: https://doi.org/10.3109/08977199308991572

Matsumura S, Quispe-Salcedo A, Schiller CM, Shin JS, Locke BM, Yakar S, et al. IGF-1 Mediates EphrinB1 Activation in Regulating Tertiary Dentin Formation. J Dent Res. 2017 Sep;96(10):1153–61. Doi: https://doi.org/10.1177/0022034517708572

Davideau JL, Sahlberg C, Blin C, Papagerakis P, Thesleff I, Berdal A. Differential expression of the full-length and secreted truncated forms of EGF receptor during formation of dental tissues. Int J Dev Biol. 1995 Aug;39(4):605–15. Doi: https://doi.org/10.1016/j.biocel.2004.01.006

Yokose S, Kadokura H, Tajima N, Hasegawa A, Sakagami H, Fujieda K, et al. Platelet-derived growth factor exerts disparate effects on odontoblast differentiation depending on the dimers in rat dental pulp cells. Cell Tissue Res. 2004 Mar;315(3):375–84. Doi: https://doi.org/10.1016/0003-9969(86)90093-2

Nakashima M, Mizunuma K, Murakami T, Akamine A. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther. 2002 Jun;9(12):814–8. Doi: 10.1038/sj.gt.3301692

Tabata MJ, Kim K, Liu JG, Yamashita K, Matsumura T, Kato J, et al. Hepatocyte growth factor is involved in the morphogenesis of tooth germ in murine molars. Development. 1996 Apr;122(4):1243–51. Disponible en: http://dev.biologists.org.gate2.inist.fr/content/122/4/1243.long

Bae J-M, Clarke JC, Rashid H, Adhami MD, McCullough K, Scott JS, et al. Specificity Protein 7 Is Required for Proliferation and Differentiation of Ameloblasts and Odontoblasts. J Bone Miner Res. 2018 Feb 5. Doi:10.1002/jbmr.3401

Yamashiro T, Aberg T, Levanon D, Groner Y, Thesleff I. Expression of Runx1, -2 and -3 during tooth, palate and craniofacial bone development. Mech Dev. 2002 Dec;119 Suppl 1:S107-110. Doi: https://doi.org/10.1016/S0925-4773(03)00101-1

Zhan F-L, Liu X-Y, Wang X-B. The Role of MicroRNA-143-5p in the Differentiation of Dental Pulp Stem Cells into Odontoblasts by Targeting Runx2 via the OPG/RANKL Signaling Pathway. J Cell Biochem. 2018 Jan;119(1):536–46. Doi: https://doi.org/10.1002/jcb.26212

Ghoul-Mazgar S, Hotton D, Lézot F, Blin-Wakkach C, Asselin A, Sautier J-M, et al. Expression pattern of Dlx3 during cell differentiation in mineralized tissues. Bone. 2005 Dec;37(6):799–809. Doi: https://doi.org/10.1016/j.bone.2005.03.020

Liu B, Chen S, Cheng D, Jing W, Helms JA. Primary cilia integrate hedgehog and Wnt signaling during tooth development. J Dent Res. 2014 May;93(5):475–82. Doi: https://doi.org/10.1177/0022034514528211

Roh SY, Park J-C. The role of nuclear factor I-C in tooth and bone development. J Korean Assoc Oral Maxillofac Surg. 2017 Apr;43(2):63–9. Doi: https://doi.org/10.5125/jkaoms.2017.43.2.63

Mitsiadis TA, Hirsinger E, Lendahl U, Goridis C. Delta-notch signaling in odontogenesis: correlation with cytodifferentiation and evidence for feedback regulation. Dev Biol. 1998 Dec 15;204(2):420–31. Doi: https://doi.org/10.1006/dbio.1998.9092

Arana-Chavez VE, Massa LF. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol. 2004 Aug;36(8):1367–73. Doi: https://doi.org/10.1016/j.biocel.2004.01.006

Couve E. Ultrastructural changes during the life cycle of human odontoblasts. Arch Oral Biol. 1986;31(10):643–51. Doi: https://doi.org/10.1016/0003-9969(86)90093-2

Xu J, Shao M, Pan H, Wang H, Cheng L, Yang H, et al. Novel role of zonula occludens-1: A tight junction protein closely associated with the odontoblast differentiation of human dental pulp cells. Cell Biol Int. 2016 Jul;40(7):787–95. Doi: https://doi.org/10.1002/cbin.10617

Arana-Chavez VE, Katchburian E. Freeze-fracture studies of the distal plasma membrane of rat odontoblasts during their differentiation and polarisation. Eur J Oral Sci. 1998 Jan;106 Suppl 1:132–6. Doi: https://doi.org/10.1111/j.1600-0722.1998.tb02165.x

Gotjamanos T. Cellular organization in the subodontoblastic zone of the dental pulp. I. A study of cell-free and cell-rich layers in pulps of adult rat and deciduous monkey teeth. Arch Oral Biol. 1969 Sep;14(9):1007–10. Doi: https://doi.org/10.1016/0003-9969(69)90070-3

Couve E, Schmachtenberg O. Autophagic activity and aging in human odontoblasts. J Dent Res. 2011 Apr;90(4):523–8. Doi: https://doi.org/10.1177/0022034510393347

Hosoya A, Hiraga T, Ninomiya T, Yukita A, Yoshiba K, Yoshiba N, et al. Thy-1-positive cells in the subodontoblastic layer possess high potential to differentiate into hard tissue-forming cells. Histochem Cell Biol. 2012 Jun;137(6):733–42. Doi: 10.1007/s00418-012-0928-1

Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite Ed). 2011 Jan 1;3:711–35. Disponible en: https://www.bioscience.org/2011/v3e/af/281/fulltext.htm

Nanci A, Fortin M, Ghitescu L. Endocytotic functions of ameloblasts and odontoblasts: immunocytochemical and tracer studies on the uptake of plasma proteins. Anat Rec. 1996 Jun;245(2):219–34. Doi: https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<219::AID-AR9>3.0.CO;2-R

Kinney JH, Pople JA, Marshall GW, Marshall SJ. Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study. Calcif Tissue Int. 2001 Jul;69(1):31–7. Doi: 10.1007/s00223-001-0006-5

Goldberg M, Septier D, Oldberg A, Young MF, Ameye LG. Fibromodulin-deficient mice display impaired collagen fibrillogenesis in predentin as well as altered dentin mineralization and enamel formation. J Histochem Cytochem. 2006 May;54(5):525–37. Doi: https://doi.org/10.1369/jhc.5A6650.2005

Xie X, Ma S, Li C, Liu P, Wang H, Chen L, et al. Expression of Small Integrin-Binding LIgand N-linked Glycoproteins (SIBLINGs) in the reparative dentin of rat molars. Dent Traumatol. 2014 Aug;30(4):285–95. Doi: https://doi.org/10.1111/edt.12093

Vennat E, Wang W, Genthial R, David B, Dursun E, Gourrier A. Mesoscale porosity at the dentin-enamel junction could affect the biomechanical properties of teeth. Acta Biomater. 2017 15;51:418–32. Doi: https://doi.org/10.1016/j.actbio.2017.01.052

Farges J-C, Alliot-Licht B, Renard E, Ducret M, Gaudin A, Smith AJ, et al. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediators Inflamm. 2015;2015:230251. Doi: https://dx.doi.org/10.1155/2015/230251

Magloire H, Romeas A, Melin M, Couble ML, Bleicher F, Farges JC. Molecular regulation of odontoblast activity under dentin injury. Adv Dent Res. 2001 Aug;15:46–50. Doi: https://doi.org/10.1177/08959374010150011201

Durand SH, Romeas A, Couble M-L, Langlois D, Li JY, Magloire H, et al. Expression of the TGF-beta/BMP inhibitor EVI1 in human dental pulp cells. Arch Oral Biol. 2007 Aug;52(8):712–9. Doi: https://doi.org/10.1016/j.archoralbio.2007.01.012

Goldberg M, Njeh A, Uzunoglu E. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration? Mediators Inflamm. 2015;2015:347649. Doi: https://dx.doi.org/10.1155/2015/347649

Farges J-C, Bellanger A, Ducret M, Aubert-Foucher E, Richard B, Alliot-Licht B, et al. Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation. Front Physiol. 2015;6:185. Doi : https://doi.org/10.3389/fphys.2015.00185

Renard E, Gaudin A, Bienvenu G, Amiaud J, Farges JC, Cuturi MC, et al. Immune Cells and Molecular Networks in Experimentally Induced Pulpitis. J Dent Res. 2016 Feb;95(2):196–205. Doi: https://doi.org/10.1177/0022034515612086

Pääkkönen V, Rusanen P, Hagström J, Tjäderhane L. Mature human odontoblasts express virus-recognizing toll-like receptors. Int Endod J. 2014 Oct;47(10):934–41. Doi: https://doi.org/10.1111/iej.12238

Charadram N, Farahani RM, Harty D, Rathsam C, Swain MV, Hunter N. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix. Bone. 2012 Jan;50(1):265–75. Doi : https://doi.org/10.1016/j.bone.2011.10.031

Farges J-C, Carrouel F, Keller J-F, Baudouin C, Msika P, Bleicher F, et al. Cytokine production by human odontoblast-like cells upon Toll-like receptor-2 engagement. Immunobiology. 2011 Apr;216(4):513–7. Doi: https://doi.org/10.1016/j.imbio.2010.08.006

Staquet M-J, Durand SH, Colomb E, Roméas A, Vincent C, Bleicher F, et al. Different roles of odontoblasts and fibroblasts in immunity. J Dent Res. 2008 Mar;87(3):256–61. Doi: https://doi.org/10.1177/154405910808700304

Keller J-F, Carrouel F, Colomb E, Durand SH, Baudouin C, Msika P, et al. Toll-like receptor 2 activation by lipoteichoic acid induces differential production of pro-inflammatory cytokines in human odontoblasts, dental pulp fibroblasts and immature dendritic cells. Immunobiology. 2010;215(1):53–9. Doi: https://doi.org/10.1016/j.imbio.2009.01.009

Durand SH, Flacher V, Roméas A, Carrouel F, Colomb E, Vincent C, et al. Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol. 2006 Mar 1;176(5):2880–7. Doi: https://doi.org/10.4049/jimmunol.176.5.2880

Dommisch H, Winter J, Willebrand C, Eberhard J, Jepsen S. Immune regulatory functions of human beta-defensin-2 in odontoblast-like cells. Int Endod J. 2007 Apr;40(4):300–7. Doi: https://doi.org/10.1111/j.0143-2885.2007.01228.x

Ibuki T, Kido MA, Kiyoshima T, Terada Y, Tanaka T. An ultrastructural study of the relationship between sensory trigeminal nerves and odontoblasts in rat dentin/pulp as demonstrated by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP). J Dent Res. 1996 Dec;75(12):1963–70. Doi: https://doi.org/10.1177/00220345960750120801

Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature. 2003 Jul 24;424(6947):398–405. Doi: 10.1038/nature01790

Maurin J-C, Delorme G, Machuca-Gayet I, Couble M-L, Magloire H, Jurdic P, et al. Odontoblast expression of semaphorin 7A during innervation of human dentin. Matrix Biol. 2005 May;24(3):232–8. Doi: https://doi.org/10.1016/j.matbio.2005.03.005

Buchaille R, Couble ML, Magloire H, Bleicher F. A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol. 2000 Sep;19(5):421–30. Doi: https://doi.org/10.1016/S0945-053X(00)00091-3

Maurin J-C, Couble M-L, Didier-Bazes M, Brisson C, Magloire H, Bleicher F. Expression and localization of reelin in human odontoblasts. Matrix Biol. 2004 Aug;23(5):277–85. Doi: https://doi.org/10.1016/j.matbio.2004.06.005

Magloire H, Lesage F, Couble ML, Lazdunski M, Bleicher F. Expression and localization of TREK-1 K+ channels in human odontoblasts. J Dent Res. 2003 Jul;82(7):542–5. Doi: https://doi.org/10.1177/154405910308200711

Allard B, Couble ML, Magloire H, Bleicher F. Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem. 2000 Aug 18;275(33):25556–61. Doi : 10.1074/jbc.M002327200

Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM. Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res. 2009 Nov;88(11):1014–9. Doi: https://doi.org/10.1177/0022034509343413

Magloire H, Maurin JC, Couble ML, Shibukawa Y, Tsumura M, Thivichon-Prince B, et al. Topical review. Dental pain and odontoblasts: facts and hypotheses. J Orofac Pain. 2010;24(4):335–49. Disponible en: http://web.b.ebscohost.com.rproxy.sc.univ-paris-diderot.fr/ehost/pdfviewer/pdfviewer?vid=1&sid=8f768180-0389-4394-ac18 2f82293838f6%40sessionmgr101

No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.

Descargas

Los datos de descargas todavía no están disponibles.