Intropica
Phenology of ten cultivars of Cannabis sativa L. under the environmental conditions of Palomino Guajira.
pdf (Español (España))
XML (Español (España))

Keywords

growth phases
BBCH scale
phenology
Cannabis

How to Cite

Candelario-Guerrero, D. A. ., Calabria Parodi, L. E. ., Pardey-Rodríguez, C., & Vargas- Sanchez, J. J. . (2023). Phenology of ten cultivars of Cannabis sativa L. under the environmental conditions of Palomino Guajira. Intropica, 65–78. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/4672

Abstract

Studies on the phenology of Cannabis sativa L. are vital because they are an excellent tool for crop management practices, such as fertilizer application, pest and disease management, and determining the adaptations needed for crop cultivation under different climatic conditions. Phenology studies the occurrence of phases in the life cycle of plants; therefore, for determining the moments of phenological events, it is necessary to use tools facilitating the process of interpreting the information taken in the field; accordingly, the BBCH scale was adapted to determine the phenological phases taking into account the days after transplantation. The work's objective was to evaluate the phenology of ten Cannabis sativa L. genotypes to identify the genotypes with the best performance under greenhouse conditions in Palomino. The variables considered were: plant height, number of sprouts, number of inflorescences, harvest index, and yield expressed in dry flower quantity. Height, sprout, and inflorescence data were recorded three times a week for ten weeks, and at week ten, the final height was quantified. Harvest index and yield were estimated at harvest time. The statistical design was completely randomized, with ten treatments and six repetitions per treatment. The results showed that of 58 phenological stages defined for Cannabis in an asexual cycle, only 19 stages are evaluated. In addition, with data collected on height gain, sprouts, and inflorescences, allows the prediction of the higher-yielding genotypes. The dry flower yield is influenced by the length of the plant, number of buds, and number of inflorescences; likewise, the harvest index proved to be a good indicator when determining the performance of each genotype. The genotype best adapted to the climatic conditions of the trial area was PS111 due to height, the number of vegetative sprouts, inflorescences, and yield.
pdf (Español (España))
XML (Español (España))

References

Alcántara, J. S., Acero, J., Alcántara, J. D. y Sánchez, R. (2019). Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. NOVA, 17(32), 109-129. https://doi.org/10.22490/24629448.3639.

Amaducci, S., Colauzzi, M., Bellochi, G. y Venturi, G. (2007). Modelling post-emergent hemp phenology (Cannabis sativa L.): Theory and evaluation. European Jornal of agronomy, 28(2), 90-102. https://doi.org/10.1016/j.eja.2007.05.006.

Ángeles, G., Brindis, F., Cristians, S. y Ventura, R. (2014). Cannabis sativa L., una planta singular. Revista Mexicana de Ciencias Farmacéuticas, 45, 1-6.

Arellano, M., Valera, D., Urrestarazu, M., García, S., Sánchez, A. y Soria, J. (2006). Estudio del microclima en dos subtipos de invernaderos Almería. Agricultura Técnica en México, 32, 25-234.

Azcón, J. y Talón, M. (2008). Fundamentos de fisiología vegetal. McGraw-Hill.

Bernal, R., Robbert, S. y Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Universidad Nacional de Colombia.

Bleiholder, H., Feller, C., Hess, M. y Meier, U. (1996). Compendio para la identificación de los estadios fenológicos de especies mono- y dicotiledóneas cultivadas: Escala BBCH extendida. Centro Federal de Investigaciones Biológicas para Agricultura y Silvicultura (BBA).

Caplan, D., Dixon, M. y Zheng, Y. (2019). Increasing Inflorescense Dry Weight and Cannabinoid Content in Medical Cannabis Using Controlled Drought Stress. HortScience Orts, 54(5), 964-969. https://doi.org/10.21273/HORTSCI13510-18.

Casiano, M. y Paz, F. (2018). Patrones espectrales de la fenología del desarrollo vegetativo y reproductivo de árboles de huizache (Acacia farnesiana (L.) Willd.). Terra Latinoamericana, 36(4), 393-409. https://doi.org/10.28940/terra.v36i4.417.

Collazos, R., Vilca, N. y Rascón, J. (2017). Utilización de fitohormonas para la inducción floral del cultivo de piña (Ananas comosus (L.) Merr.) en el distrito de Santa Rosa, Rodríguez de Mendoza, región Amazonas (Perú). Sustainable Agroproduction, 1(1).

Cosentino, S., Testa, G., Scordia, D. y Copani, V. (2012). Sowing time and predicction of flowering of different hemp (Cannabis sativa L.) genotypes in southern Europe. Industrial Crops and Products, 37(1), 20-33. https://doi.org/10.1016/j.indcrop.2011.11.017.

De Castro, M., Oliveira, L. F. C., Wendland, A., Guimarães, C. M., Quintela, E. D., Barbosa, F. R., Carvalho, M. da C. S., Lobo, M. y Silveira, P. M. (2018). Conhecendo a Fenologia do Feijoeiro e Seus Aspectos Fitotécnicos. Embrapa.

De Marco, R., Martins, R., Herter, F., Ribeiro, C. y Nava, G. (2021). Ciclo de desenvolvimento da nogueira-pecã – Escala fenológica. Revista de Ciências Agroveterinárias, 20(4), 260-270. https://doi.org/10.5965/223811712042021260.

Escalante, J. y Kohashi, J. (2015). El rendimiento y crecimiento del frijol: manual para la toma de datos. México. Instituto de Enseñanza e Investigación en Ciencias Agrícolas.

Gaitán, J. y Chivata, D. (2022). Validación de un sustrato, la nutrición y el control de humedad en el cultivo de Cannabis sp. Metroflor-agro, 96, 40-41.

Guzmán, D. y Uprimny, R. (2010). Políticas de drogas y situación carcelaria en Colombia. Wola.

IDEAM y UNAL. (2020). La variabilidad climática y el cambio climático en Colombia. Universidad Nacional de Colombia.

Latorre, B., Rioja, M. y Lillo, C. (2002). Efecto de la temperatura en el desarrollo de la infección producida por Botrytis cinerea en flores y bayas de uvas de mesa. Ciencia e Investigación Agraria, 29(3), 145-151. https://doi.org/10.7764/rcia.v29i3.407.

Lisson, S., Mendham, N. y Carberry, P. (2000). Development of a hemp (Cannabis sativa L.) simulation model 2. The flowering response of two hemp cultivars to photoperiod. Revista Australiana de Agricultura Experimental, 40(3), 413-417. https://doi.org/10.1071/EA99059.

Martínez, A., Roldán, A. y Pascual, J. (2011). Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Applied Soil Ecology, 47(2), 98-105.

Mediavilla, V., Jonquera, M., Schmid-Slembrouck, I. y Soldati, A. (1998). Decimal code for growth stages of hemp (Cannabis sativa L.). Journal of The International Hemp Association, 5(2), 68-74.

Meier, U. (2018). Etapas de desarrollo de las plantas monocotiledóneas y dicotiledóneas. Instituto Julius Kühn.

Mishchenko, S., Mokher, Y., Laiko, I., Burbulis, N., Kyrychenko, H. y Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės Ūkio Mokslai, 24(2), 31-36. https://doi.org/10.6001/zemesukiomokslai.v24i2.3496.

Missouri Botanical Garden. (2022). Tropicos.org. http://www.tropicos.org.

Rodríguez-Yzquierdo, G.A., Patiño- Moscoso, M.A. y Betancourt- Vásquez, M. (2021). Caracterización fisiológica en plantas de Cannabis medicinal durante diferentes etapas fenológicas bajo estrés abiótico. Agronomía Mesoamericana, 32(3), 823-840. https://doi.org/10.15517/am.v32i3.44443.

Royal Botanic Gardens. (2022). Plants of the World Online. https://powo.science.kew.org.

Russo, E., Jiang, H. E., Li, X., Sutton, A., Carboni, A., Bianco, F., Mandolino, G., Potter, D., Zhao, Y. X., Bera, S., Zhang, Y. B., Lü, E. G., Ferguson, D. K., Hueber, F., Zhao, L. C., Liu, C. J., Wang, Y. F. y Li, C. S. (2008). Phytochemical and genetic analyses of ancient Cannabis from Central Asia. Journal of Experimental Botany, 59(15), 4171-4182. https://doi.org/10.1093/jxb/ern260.

Small, E. (2017). Cannabis a complete guide. CRC Press.

Stemeroff, J. (2017). Irrigation Management Strategies for Medical Cannabis in Controlled Environments [Tesis de maestría en Ciencia Ambiental, University of Guelph, School of Environmental Sciences]. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/12125.

Suárez, P., Reyes, G. y Quintero J. (2018). Cannabis: desde sus orígenes hasta la actualidad. Revista de Historia de los Cuidadores Profesionales y de las Ciencias de la Salud, 5, 19-29.

Tang, K., Struik, P., Yin, X., Thouminot, M., Bjelková, M., Stramkale, V. y Amaducci, S. (2016). Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Industrial Crops and Products, 87, 33-34. https://doi.org/10.1016/j.indcrop.2016.04.026.

Tchameni, S., Ngonkeu, E., Begoude, D., Nana, L., Fokom, R., Owona, A. D., Mbarga, J. B., Tchana, T., Tondje, P. R., Etoa, F. X. y Kuaté, J. (2011). Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Protection, 30(10), 1321-1327. https://doi.org/10.1016/j.cropro.2011.05.003.

Torres, R. (1995). Agrometeorología. Trillas S. A.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Intropica

Downloads

Download data is not yet available.