Intropica
Phytoplankton of the coastal zone of the department of Atlántico, Colombia
pdf (Español (España))
Anexo I (Español (España))
Anexo II (Español (España))
XML (Español (España))

Keywords

Chlorophyll-a;
indicator
Chaetoceros
littoral zone

How to Cite

De la Parra-Guerra, A. C., García-Alzate, C. ., & Gutiérrez-Moreno (†), L. C. . (2022). Phytoplankton of the coastal zone of the department of Atlántico, Colombia. Intropica, 162–172. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/4529

Abstract

Biological communities are made up of taxonomic groups, where phytoplankton, as primary producer, has an ecological relevance, it serves to understand the structure and functioning of an ecosystem and the way in which they interact with physicochemical parameters. In order to evaluate the richness and abundance of phytoplankton in the coastal zone of the department of Atlántico and its association with physicochemical variables and thus know its spatial and temporal changes, monitoring was carried out during 2013. Five zones were located at along the coastal zone such as Astilleros, Santa Verónica, Puerto Velero, Puerto Colombia and Mallorquín. In each zone, three stations were established, located in a straight line, with a distance between them of 5 km. For the collection of the phytoplankton and chlorophyll a (Cl-a) samples, 24 L of surface water were filtered at each of the stations, with a conical drum with a 24 µm pore diameter mesh and with 500 amber bottles. mL, respectively, which were kept in the dark. Additionally, physicochemical variables were recorded in situ. A total of 560 Cél.mL-1 of phytoplankton were identified, grouped into 47 species and five classes. The Bacillariophyceae presented the highest density and richness, followed by the Dinophyceae, Cyanophyceae, Euglenophyceae and Chlorophyceae. Chaetoceros sp. (83 Cél.mL-1) and Chaetoceros lorenzianus (64 Cél.mL-1) were the most abundant and most representative species precisely because of their abundance. Jaccard's analysis showed a dissimilarity of 80 % between stations 5A, 5B, 5C, indicating a different composition. In general, the monitoring stations that behaved as contaminated sites with a high influence of the waters of the Magdalena River.
pdf (Español (España))
Anexo I (Español (España))
Anexo II (Español (España))
XML (Español (España))

References

APHA, AWWA, WEF. 2012. Standard Methods for examination of water and wastewater. 22nd ed. American Public Health Association, Washington D.C.

APHA, 2005. Standard Methods of Water and Wastewater. 21st Edn., American Public Health Association, Washington, DC.

Blanco-Muñoz, E., De la Parra-Guerra, A., García-Alzate, C. y Villarreal-Blanco, E. 2020 Análisis físico-químico y fitoplanctónico de la ciénaga Puerto Caimán, vertiente Caribe, Colombia. Intropica 15(2): 114-125. Doi: https://doi.org/10.21676/23897864.3650.

Brenes, C.L., Ballestero, D. y Hernández, A. 2007. Estructura hidrográfica de la Bahía de Bluefields, Nicaragua. Revista de Ciencia y Tecnología 25(1 y 2). 57-66

Chrétiennot- Dinet, M., Sournia, A., Ricard, M. y Billard, C. 1993. A classification of the marine phytoplankton of the world from class to genus. Phycologia 32: 159–179. Doi: https://doi.org/10.2216/i0031-8884-32-3-159.1

De la Parra-Guerra, A.C. y García-Alzate, C. 2019. Metabolismo de un tramo en la cuenca baja del río Cesar, departamento del Cesar, en una época de sequía, Colombia. Intropica 14(1): 16-23. Doi: http://dx.doi.org/10.21676/23897864.2719.

González, J.A., Céspedes, J.G., Ramírez, E.G., Zamora, J.A. y Cortés, J. 2008. Parámetros físico-químicos en aguas costeras de la Isla del Coco, Costa Rica (2001-2007). Revista de Biología Tropical 56(2): 49-56

Hammer, Ø. 2013. PAST Paleontological Statistics Version 3.0: Hennemann, M.C. y Petrucio, M.M. 2011. Spatial y temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environmental Monitoring y Assessment 181: 347–361. Doi: https://doi.org/10.1007/s10661-010-1833-5 .

Jensen, K. y Moestrup, Ø. 1998. waters. Opera Botanica 133: 1-68. Doi: https://doi.org/10.1111/j.1756-1051.1998.tb01103.x.

Kiørboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. In Advances in marine biology (Vol. 29, pp. 1-72). Academic Press.

Kshirsagar A.D. 2013. Bioremediation of wastewater by using microalgae: an experimental study. International Journal of Life Science Biotechnology and Pharma Research 2(3): 339-346.

Lackey, J.B. 1938. The manipulation and counting of river plankton and changes in some organisms due to formalin preservation. Public Health Reports (1896-1970) 2080–2093. Doi: https://doi.org/10.2307/4582717.

Lambert, W. y Sommer, U. 1997. Limnoecology: The ecology of lakes and streams. Oxford University Press. Oxford. 382 p.

May-Kú, M.A., Valdés-Lozano, D. y Ardisson, P.L. 2016. Variación espacial y temporal de las características fisicoquímicas del agua y sedimento en la laguna costera Yalahau, Quintana Roo. Hidrobiológica 26 (1): 41-51. Doi: https://doi.org/10.24275/uam/izt/dcbs/hidro/2016v26n1/May

Morales, J. y García-Alzate, C. A. 2016. Estructura trófica de los peces en arroyos del Corral de San Luis, cuenca del Bajo Magdalena, Caribe, Colombia. Revista de Biología Tropical 64(2): 715-732. Doi:

Moreno, J.R., Medina, C.D. y Albarracín, V.H. 2012. Aspectos ecológicos y metodológicos del muestreo, identificación y cuantificación de cianobacterias y microalgas eucariotas. REDUCA (Biología) 5: 110–125.

Parra, O., Rivera, P., González, M., Dellarossa, V. y Orellana, M. 1982. Manual Taxonómico del Fitoplancton de aguas continentales. Bacillariophyceae. Chile: Universidad de Concepción, Concepción.

Pereira, P., De Pablo, H., Vale, C., Franco, V. y Nogueira, M. 2009. Spatial y seasonal variation of water quality in an impacted coastal lagoon (Óbidos Lagoon, Portugal). Environmental Monitoring y Assessment 153: 281–292. Doi: https://doi.org/10.1007/s10661-008-0355-x.

R Core Team 2013. R: A Language and Environment for Statistical Computing.

Roldán, G. y Ramírez, J. 2008. Fundamentos de limnología Neotropical. Segunda Edición. Editorial Universidad de Antioquia. Medellín.

Rines, J.E. y Hargraves, P.E. 1990. Morphology and taxonomy of Chaetoceros compressus Lauder var. hirtisetus var. nova, with preliminary consideration of closely related taxa. Diatom Research 5: 113-127.

Rivera, C. y Donato, J. 2008. Influencia de las variaciones hidrológicas y químicas sobre la diversidad de diatomeas bénticas. Donato, J. Editor. Ecología de un río de montaña de los Andes Colombianos (Río Tota, Boyacá). Universidad Nacional de Colombia, Bogotá D.C.

Round, F.E., Crawford, R.M. y Mann, D.G. 1990. Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.

Santillán-Aredo, S.R. y Guerrero-Padilla, A.M. 2018. Macroinvertebrados y fitoplancton como bioindicadores de contaminación en la cuenca del río Chicama, Perú. Revista Tecnología en Marcha 31(4): 97-110. Doi: https://doi.org/10.18845/tm.v31i4.3968.

Tejeda-Benítez, L., Flegal, R., Odigie, K. y Olivero-Verbel, J. 2016. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environmental Pollution 212: 238-250. Doi: https://doi.org/10.1016/j.envpol.2016.01.057.

Trujillo, G. y Guerrero, A. 2015. Caracterización físico-química y bacteriológica del agua marina en la zona litoral costera de Huanchaco y Huanchaquito, Trujillo, Perú. ReBIol 35(1): 23-33.

Vargas-Montero, M. y Freer, E. 2004a. Paralytic shellfich poisoning outbreaks in Costa Rica. In: Steidinger K.A., Landsberg, J.H., Tomas C.R., y Vargo, G.A. Editor. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO, Paris.

Vargas-Montero, M. y Freer, E. 2004b. Proliferaciones algales de la diatomea toxigénica Pseudo-nitzschia (Bacillariophyceae) en el Golfo de Nicoya, Costa Rica. Revista de Biología Tropical 52(Suppl. 1): 127-132.

Vélez-Azañero, A., Lozano, S. y Cáceres-Torres, K. 2016. Diversidad de fitoplancton como indicador de calidad de agua en la cuenca baja del río Lurín, Lima, Perú. Ecología aplicada 15(2): 69-79. Doi: http://dx.doi.org/10.21704/rea.v15i2.745

Vidal, L. 2010. Manual de Fitoplancton hallado en la Ciénaga Grande de Santa Marta y Cuerpos de Agua Aledaños. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería. Bogotá D.C.

Wan-Maznah, W.O. 2010. Perspectives on the Use of Algae as Biological Indicators for Monitoring and Protecting Aquatic Environments, with Special Reference to Malaysian Freshwater Ecosystems. Tropical Life Sciences Research 21(2): 51-67.

Wehr, J. y Sheath, R. 2003. Freshwater habitats of algae. In: falta editors Freshwater Algae of North America. Academic Press, San Diego.

Wehr, J.D., Sheath, R.G. y Kociolek, J.P. 2015. Freshwater Algae of North America: Ecology and Classification. Doi: Academic Press, San Diego.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 Intropica

Downloads

Download data is not yet available.