Intropica
Cellular viability and growth of microalgae: effect of the culture medium

Versions

pdf (Español (España))
XML (Español (España))

Keywords

medios alternativos
criopreservación
fertilizante
metanol
nutrientes

How to Cite

Oviedo-Montiel, H. ., Herrera-Cruz, E. ., Hoya-Florez, J. ., Prieto-Guevara , M. ., Estrada-Posada, A. ., & Yepes Blandón, J. A. (2020). Cellular viability and growth of microalgae: effect of the culture medium. Intropica, 15(2), 126–136. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/3633 (Original work published December 9, 2020)

Abstract

In Aquaculture, the use of microalgae is fundamental in the first feeding of native fish species, since their optimal nutritional level favors survival. Successful production of microalgae under laboratory conditions depends on the culture medium used during the cryopreservation stage of production. Agricultural fertilizers can be used as a low-cost alternative culture media that promotes cell growth and cryopreservation. The objective was to evaluate the effect of two culture media on population growth (PG) and post-thawing viability (PTV) of three microalgal species (Chlorella sp., Desmodesmus sp., and Ankistrodesmus sp.). The PG and PTV were evaluated for F/2 Guillard and Nutrifoliar® culture media. Instantaneous growth rate (K), doubling time (dt), yield (y), and maximum density (md) were evaluated for PG in both culture media. For VCP, 5 and 10 % methanol was used in six treatments. The PTV was classified as no cell damage (NCD), cell damage (CD), and marked lesions (ML). Population growth did not differ among microalgae (p >0.05). T1 resulted in the lowest dt for Desmodesmus sp., (p <0.05). T2 showed the highest y and md for the three microalgae (p <0.05). Regarding post-thawing cell viability, the highest NCD for Chlorella sp. at day (d) 0 was similar between T3 and T4, and at d 5 it occurred in T6; for Desmodesmus sp., at d 0 it occurred in T6, and at d 5 it was similar between T6 and T1; for Ankistrodesmus sp., at d 0 and d 5 it occurred in T3. It is concluded that the culture medium Nutrifoliar®, is a viable alternative and of low cost for the culture and the cryopreservation of microalgae of fresh water.
pdf (Español (España))
XML (Español (España))

References

Abreu, L., Borges, L., Marangoni, J. and Abreu, P. 2012. Cryopreservation of some useful microalgae species for biotechnological exploitation. Journal of Applied Phycology 24(6): 1579–1588. Doi: https://doi.org/10.1007/s10811-012-9818-0.

Allam, M., Xu, L. and Wang, Z. 2020. Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore.

Aray-Andrade, M., Uyaguari-Díaz, M. and Bermúdez, R. 2018. Short-term deleterious effects of standard isolation and cultivation methods on new tropical freshwater microalgae strains. PeerJ 6:e5143. Doi: https://doi.org/10.7717/peerj.5143 .

Ávila, J. and Llanos, J. 2014. Cryopreservation of Chlorella sp. isolated from municipal wastewater. The Biologist 12(2): 263-269.

Baroli, I. and Niyogi, K. 2000. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. The Royal Society 355:1385-1394. Doi: https://doi.org/10.1098/rstb.2000.0700.

Benson, E. and Bremner, D. 2004. Oxidative stress in the frozen plant: a free radical point of view. Life in the frozen state. Boca Raton: CRC Press 206-241: 704. Doi: https://doi.org/10.1201/9780203647073.ch6.

Bui, T., Ross, I., Jakob, G., Hankamer, B. 2013 Impact of Procedural Steps and Cryopreservation Agents in the Cryopreservation of Chlorophyte Microalgae. PLoS ONE 8(11): e78668. Doi: https://doi.org/10.1371/journal.pone.0078668.

Bumbak, F., Cook, S., Zachleder, V., Hauser, S. and Kovar, K. 2011. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Applied Microbiology and Biotechnology 91(1): 31-46. Doi: https://doi.org/10.1007/s00253-011-3311-6 .

Bhattacharya, M., Goswami, S. 2020. Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology. 25: 101580. Doi: https://doi.org/10.1016/j.bcab.2020.101580 .

Castañeda, J., Rivas, A., and Urrutia, R. 2010. Efecto del DimetilSulfoxido (DMSO) sobre la apoptosis y daño renal en un modelo animal de isquemia-reperfusión. REDICCES, El Salvador.

Chian, R. 2010. Cryobiology: Fertility Cryopreservation. Cambridge University Press, Montréal.

Cobos-Ruiz, M., Castro-Gómez, J. and Cerdeira-Gutierrez, L. 2014. Potencial biotecnológico para la producción sustentable de biodiesel de microalgas oleaginosas aisladas del río Itaya, Loreto, Perú. Ecología aplicada 13(2): 169-175. Doi: https://doi.org/10.21704/rea.v13i1-2.467 .

Cobos-Ruiz, M., Paredes-Rodríguez, J. and Castro-Gómez, J. 2016. Inducción de la producción de lípidos totales en microalgas sometidas a estrés nutritivo. Acta Biológica Colombiana 21(1): 17-26. Doi: https://doi.org/10.15446/abc.v21n1.47439 .

Colorado-Gómez, M., Moreno-Tirado, D. and Pérez-Posada, J. 2013. Desarrollo, producción y beneficio ambiental de la producción de microalgas. La experiencia en La Guajira, Colombia. Ambiente y Desarrollo 17(32): 113-126.

Colinagro. 2013. Ficha técnica NUTRIFOLIAR ® COMPLETO. URL:https://recintodelpensamiento.com/ComiteCafeteros/HojasSeguridad/Files/Fichas/FTNutrifoliar201462885141.pdfConsulted: November, 2020.

Day, J. and Brand, J. 2005. Cryopreservation Methods for Maintaining Cultures. Algal Culturing Techniques. Elsevier Academic Press, New York.

Day, J. and Fleck, R. 2015. Cryo-injury in algae and the implications this has to the conservation of micro-algae. Microalgae Biotechnology 1(1): 1–11. Doi: https://doi.org/10.1515/micbi-2015-0001.

Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current opinion in plant biology 9(4): 436-442. Doi: https://doi.org/10.1016/j.pbi.2006.05.014.

Fuller, B. 2004. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo-Letters 25(6): 375-388.

Guillard, R. and Ryther, J. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian journal of microbiology 8(2): 229–239. Url: https://www.nrcresearchpress.com/doi/abs/10.1139/m62-029#.XtG_FTr0m00 . Consulted: November, 2019.

Hazen, K. 2013. Influence of DMSO on antifungal activity during susceptibility testing in vitro. Diagnostic Microbiology and Infectious Disease 75(1): 60-3. Doi: https://doi.org/10.1016/j.diagmicrobio.2012.09.002.

Hernández-Pérez, A. and Labbé, J. 2014. Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía 49(2): 157-173. Doi: https://doi.org/10.4067/S0718-19572014000200001.

Holm-Hansen, O. 1963. Viability of blue-green and green algae after freezing. Physiologia Plantarum 16(3): 530–540.

Hwanc, S. and Horneland, W. 1965. Survival of algal cultures after freezing by controlled and uncontrolled cooling. Cryobiology 1(5): 305-311.

Jad-Allah, K. 2012. Development of cheap and simple culture medium for the microalgae Nannochloropsis sp. based on agricultural grade fertilizers available in the local market of Gaza strip (Palestine). Journal of Al Azhar University-Gaza 14(1): 61-76.

Jain, J. and Paulson, R. 2006. Oocyte cryopreservation. Fertility and sterility 86(4): 1037-1046.

Jeyapalan, J. and Sedivy, J. 2008. Cellular senescence and organismal aging. Mechanisms of Ageing and Development 129(7): 467-474. Doi: https://doi.org/10.1016/j.mad.2008.04.001.

Ji, F., Hao, R., Liu, Y., Li, G., Zhou, Y. and Dong, R. 2013. Isolation of a novel microalgae strain Desmodesmus sp. and optimization of environmental factors for its biomass production. Bioresource Technology 148: 249–254.

Kiron, V., Sørensen, M., Huntley, M., Vasanth, G., Gong, Y., Dahle, D. and Palihawadana, A. 2016. Defatted biomass of the microalga, Desmodesmus sp., can replace fishmeal in the feeds for Atlantic salmon. Frontiers in Marine Science 3(67): 1-12. Doi: https://doi.org/10.3389/fmars.2016.00067.

Lazar, T. 2003. Fisiología Vegetal. Washington D.C.

López-Elías, J., González-Vega, R., Márquez-Ríos, E. and Torres-Arreola, W. 2015. Efecto de la concentración y fuentes de nitrógeno en la producción de proteínas de cultivos masivos de la microalga Chaetoceros muelleri. Revista Internacional de Botánica Experimental 84: 331-337.

Luna-Figeroa, J. and Arce, E. 2017. Un menú diverso y nutritivo en la dieta de peces: “El alimento vivo”. Agroproductividad 10(9): 112-116.

Mansa, R., Sipaut, C., Yasir, S., Dayou, J. and Joannes, C. 2018. Comparative studies of cell growth, total lipid and methyl palmitate of Ankistrodesmus sp. in phototrophic, mixotrophic and heterotrophic cultures for biodiesel production. International Journal of Renewable Energy Research 8(1): 438-450.

Mazur, P. 2004. Principles of cryobiology . In: IFuller B.J., Lane N. and Benson E.E. ( Editor). Life in the Frozen State. Boca Raton: CRC Press, Cleveland.

Meléndez-Martínez, A., Vicario, I. and Heredia, F. 2007. Pigmentos carotenoides: consideraciones estructurales y fisicoquímicas. Archivos latinoamericanos de nutrición 57(2): 109-117.

Muñoz-Peñuela, M., Ramírez-Merlano, J., Otero-Paternina, A., Medina-Robles, V., Cruz-Casallas, P. and Velasco-Santamaría, Y. 2012. Efecto del medio de cultivo sobre el crecimiento y el contenido proteico de Chlorella vulgaris. Revista Colombiana de Ciencias Pecuarias 25(3): 438-449.

Nagao, R., Ueno, Y., Akita, F., Suzuki, T., Dohmae, N., Akimoto, S., Jian-Ren, S. 2019. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Photosynth Research 140:141–149. Doi: https://doi.org/10.1007/s11120-018-0576-y .

Ortega-Salas, A. and Reyes-Bustamante, H. 2012. Cultivo de las microalgas dulceacuícolas Kirchneriella obesa, Scenedesmus quadricauda y Chlorococcum infusorium empleando tres medios de cultivo. Avances en Investigación Agropecuaria 16(2): 35-44.

Ortíz-Moreno, M., Cortés-Castillo, C., Sánchez-Villarraga, J., Padilla, J. and Otero-Paternina, A. 2012. Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo en condiciones autotróficas y mixotróficas. Revista Orinoquia 16(1): 11-20. Doi: https://doi.org/10.22579/20112629.224.

Prakash, O., Nimonkar, Y. and Shouche Y. 2012. Practice and prospects of microbial preservation. National centre for cell science 339(1): 1-9. Doi: https://doi.org/10.1111/1574-6968.12034.

Prieto-Guevara, M., Alarcón-Furnieles, J., Morgan-Figueroa, A., Montiel-Osorio, Z., Jiménez-Velásquez, C., Espinosa-Araujo, J. and Atencio-García, V. 2017. Viabilidad celular en la criopreservación de la microalga Scenedesmus sp. Resumen de congreso. Latin American & Caribbean Aquaculture. Mazatlan (Mex).Url:https://wasblobstorage.blob.core.windows.net/meeting-abstracts/LacQua17AbstractBook.pdf Consulted: January, 2020.

Prieto-Guevara, M. 2013. Plancton regional y su potencial en acuicultura. Temas clave para la acuicultura. Centro de Investigaciones Piscícolas CIUC. Fondo editorial Universidad de Córdoba, Montería.

Qin, S., Liu, G. and Hu, Z. 2008. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process biochemistry 43(8): 795-802.

Rahardini, R., Helmiati, S. and Triyatmo, B. 2018. Effect of inorganic fertilizer on the growth of freshwater Chlorella sp. In IOP Conference Series: Earth and Environmental Science 139(1): 1-9. Doi: https://doi.org/10.1088/1755-1315/139/1/012005.

Rinanti, A. and Purwadi, R. 2017. Harvesting of freshwater microalgae biomass by Scenedesmus sp. as bioflocculant. IOP publishing 106(1): 1-6. Doi: https://doi.org/10.1088/1755-1315/106/1/012087 .

Ríos, M. 2003. El estrés oxidativo y el destino celular. Revista Química viva 2(1): 1-12. URL: https://www.redalyc.org/pdf/863/86320104.pdf . Consulted: March, 2020.

Rodríguez-Meizoso, I., Jaime, L., Santoyo, S., Señoráns, F., Cifuentes, A. and Ibáñez, E. 2010. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. Journal of Pharmaceutical and Biomedical Analysis 51(2): 456-463. Doi: https://doi.org/10.1016/j.jpba.2009.03.014.

Saadaoui, I., Al Emadi, M., Bounnit, T., Schipper, K., Al Jabri, H. 2016. Cryopreservation of microalgae from desert environments of Qatar. Journal of Applied Phycology 28(4):2233-2240. Doi: https://doi.org/10.1007/s10811-015-0743-x.

Sharifah, N., Nosi, M. and Khatoon, H. 2016. Phytoplankton Ankistrodesmus sp. as an alternative tool in controlling fish disease. AACL Bioflux 9(1): 42-49.

Shatwell, T. and Köhler, J. 2019. Decreased nitrogen loading controls summer cyanobacterial blooms without promoting nitrogen‐fixing taxa: Long‐term response of a shallow lake. Limnology and Oceanography 64(1): 166-178. Doi: https://doi.org/10.1002/lno.11002.

Silva-Benavides, A. 2016. Evaluación de fertilizantes agrícolas en la productividad de la microalga Chlorella sorokiniana. Agronomía Mesoamericana 27(2): 265-275. Doi: https://doi.org/10.15517/am.v27i2.24361.

Sipaúba-Tavares, L., Donadon, A., Berchielli-Morais, F. and Scardoeli-Truzzi. 2017. Development of low-cost culture media for Ankistrodesmus gracilis based on inorganic fertilizer and macrophyte. Acta Limnologica Brasiliensia 29(5): 1-9. Doi: https://doi.org/10.1590/s2179-975x3916.

Sipaúba-Tavares, L. and Pereira, A. 2008. Large scale laboratory cultures of Ankistrodesmus gracilis (Reisch) Korsikov (Chlorophyta) and Diaphanosoma biergei Korinek, 1981 (Cladocera). Brazilian Journal of Biology 68(4): 875-883.

Smith, D., Ryan, J. and Stackebrandt, E. 2008. The ex situ conservation of microorganisms: aiming at a certified quality management. In: Doelle, H.W. and DaSilva E.J. Editors. Biotechnology. EOLSS Publisher, Oxford.

Soares, J., Loteiro, R., Rosa, R., Santos, M., Nascimento, A., Santos, N., Rhys, T., Nunes-Nesi, A. and Arêdes, M. 2017. Scenedesmus sp. cultivation using comercial-grade ammonium sources. Annal of Microbiology (1): 1-13. Doi: https://doi.org/10.1007/s13213-017-1315-x.

Tagliaferro, G., Izário, H., Chandel, A., Silva, S., Silva, M. and Santos J. 2019. Continuous cultivation of Chlorella minutissima 26a in a tube-cylinder internal-loop airlift photobioreactor to support 3G biorefineries. Renewable Energy 130: 439-445. Doi: https://doi.org/10.1016/j.renene.2018.06.041.

Vásquez-Suárez, A., Guevara, M., González, M., Cortez, R. and Arredondo-Vega, B. 2013. Crecimiento y composición bioquímica de Thalassiosira pseudonana (Thalassiosirales: Thalassiosiraceae) bajo cultivo semi-continuo en diferentes medios y niveles de irradiancias. Revista de Biología Tropical 61(3): 1003-1013. Doi: https://doi.org/10.15517/rbt.v61i3.11776.

Vera, A., Yépez, M., Martínez, M. and Pinto, G. Crecimiento mixotrófico de Chlorella sp. cultivada en medios enriquecidos con el exudado gomoso de Acacia tortuosa. Revista CENIC Ciencias Biológicas 33(1): 19-22.

Wowk, B. 2007. How cryoprotectants work. In Cryonics. Alcor Life Extension Foundation 28(3): 3-7.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2020 Intropica

Downloads

Download data is not yet available.