Intropica
Effect of commercially formulated Trichoderma harzianum fungus on wheat seeds
PDF (Español (España))
XML (Español (España))

Keywords

Triticum aestivum; biological agent, biostimulant; phytopathogens

How to Cite

Morinigo-Villan, I. A. ., Vega-Britez, G. D. ., Lesmo-Duarte, N. D. ., Velázquez-Duarte, J. A. ., Gennaro-Campos , K. H. ., & Alvarenga-Serafini, J. D. . (2019). Effect of commercially formulated Trichoderma harzianum fungus on wheat seeds. Intropica, 14(2), 104–111. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/3095

Abstract

Wheat is one of the most important cereals in the world for human consumption therefore fungal diseases and its control represents a great challenge. This experiment was carried out with the objective of looking for an alternative biological control agent, it was undertaken evaluating the effects of different doses of the commercially formulated Trichoderma harzianum Rifai (1969), fungal base, on quality physiological and sanitary selected wheat seeds. Two different planting methods were employed: in the Blotter test, sowing in seedbed, using a completely random array, applying five treatments with eight repetitions of 50 seeds, reaching a total of 400 seeds, with three different doses of the product (100, 200, 300 mL/100 kg seeds), including the absolute test subject and the chemical composition (Carbendazin + Thiram). The results were subjected to the ANAVA and the Tukey test allowing for a 5 % error margin. The fungal genera identified in the wheat seeds were Rhizopus spp. and Aspergillus flavus, in the control subject, The Rhizopus spp. genus fungi prevailed, while the application of different doses of T. harzianum resulted in a decrease of these colonies. According to the level of control, the three doses of the commercial formula applied were satisfactory, in addition to positively influencing the germination percentage of the seeds in relation to the control and the higher index of growth speed was observed after applying T. harzianum at a 300 mL/100 kg of seed dosage. T. harzianum can be used as a biostimulant in plants with a good antagonistic capability against phytopathogens that cause disease in wheat seeds.
PDF (Español (España))
XML (Español (España))

References

Adnan, M., Islam, W., Shabbir, A., Khan, K.A., Ghramh, H.A., Huang, Z., Chen, H.Y.H. y Lu, G. 2019. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microbial Pathogenesis 129: 7-18.

Barnett, H.L. y Hunter, B.B. 1998. Illustrated genera of imperfect fungi. The American Phytopathological Society Press, St. Paul, Minessota.

Bernat, P., Nykiel-Szymańska, J., Gajewska, E., Różalska, S., Stolarek, P., Dackowa, J. y Slaba, M. 2018. Trichoderma harzianum diminished oxidative stress caused by dichlorophenoxyacetic acid (2,4-D) in wheat, with insights from lipidomics. Journal of Plant Physiology 229: 158-163.

Bunbury-Blanchette, A.L y Wlaker, A.K. 2019. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control 130: 127-135.

Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas (CAPECO). 2018. Área de siembra, producción y rendimiento._URL:_http://capeco.org.py/area-de-siembra-produccion-y-rendimiento/. Consultado: 14 de octubre 2018.

Colmán, A.A. 2011. Tratamiento químico y biológico en semillas de sésamo para el control de Macrophomina phaseolina. Tesis de Grado (Ingeniería Agronómica), Universidad Nacional de Asunción, San Lorenzo, Paraguay.

El-Gremi, S.M., Draz, I.S. y Youssef, W.A-E. 2017. Biological control of pathogens associated with kernel black point disease of wheat. Crop Protection 91: 13-19.

El-Sharkawy, H.H.A., Rashad, Y.M. y Ibrahim, S.A. 2018. Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological and Molecular Plant Pathology 103: 84-91.

French, E.R. y Herbert, T.T. 1980. Métodos de investigación fitopatológica. Instituto Interamericano de Ciencias Agrícolas (IICA), San José.

Gennaro, K.H. 2016. Ocurrencia y control de hongos con productos de alternativos en semillas de trigo de diferentes variedades. Tesis de Magíster, Universidad Nacional de Asunción, Facultad de Ciencias Agrarias, San Lorenzo, Paraguay.

Ghorbanpour, A., Salimi, A., Ghanbary, M.A.T., Pirdasthi, H. y Dehestani, A. 2018. The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Scientia Horticulturae 230: 134–141.

International Rules for Seed Testing, Suiza (ISTA). 2012. Charge 05. The association international seed testing: The international germination test. 2010. Suiza, Swizeland, Bassesdor.

Kim, T.G. y Knudsen, G.R. 2013. Relationship between the biocontrol fungus Trichoderma harzianum and the phytopathogenic fungus Fusarium solani sp. pisi. Applied Soil Ecology 68: 57– 60.

Li, R.X., Cai, F., Pang, G., Shen, Q-R., Li, R. y Chen W. 2015. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and Its relationship with the Promotion of Tomato Plant Growth. PLoSONE 10(6): 1-16.

Locatelli, G.O., Santos, G.F., Botelho, P.S., Finkler, C.L.L. y Bueno, L.A. 2017. Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biological Control 117: 21-29.

López-Bucio, J., Pelagio-Flores, R. y Herrera-Estrella, A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196: 109–123.

Maguire, J.D. 1962. Speed of germination-aid in selection and evaluation for seeding emergence and vigor. Crop Science 2(2): 176-177.

Meena, S.K., Rakshit, A. y Meena, V.S. 2016. Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under green house conditions. Biocatalysis and Agricultural Biotechnology 6: 68–75.

Meena, S.K., Rakshit, A., Singh, H.B. y Meena, V.S. 2017. Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatalysis and Agricultural Biotechnology 12: 172–178.

Mastouri, F., Björkman, T. y Harman, G.E. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100(11): 1213-1221.

Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B.A. y Mukherjee, P.K. 2018. Fungal Biology Reviews 32: 62-85.

Menezes, M. y Oliveira, S. 1993. Fungos fitopatogênicos. Imprensa Universitária da Universidade Federal Rural de Pernambuco, Recife.

Moya-Elizondo, E.A. y Jacobsen, B.J. 2016. Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biological Control 92: 153–163.

Neegaard, L. 1979. Introduction to methods of see-health testing. Seed Science and Technology 7(4):601-636.

Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Roucco, M., Marra, R., Lombardi, N., Woo, SL. y Lorito, M. 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection 92: 176-181.

Pathak, N. y Zaidi, R.K. 2013. Studies on seed-borne fungi of wheat in seed health testing programme. Archives of Phytopathology and Plant Protection 46(4): 389-401.

Shukla, N., Awasthi, R.P., Rawat, L. y Kumar, J. 2014. Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of Applied Biology 166(2): 171-182.

Swain, H., Adak, T., Mukherjee, A.K., Mukherjee, P.K., Bhattacharyya, P., Behera, S., Bagchi, T.B., Patro, R., Khandual, A., Bag, M.K., Dangar, T.K., Lenka, S. y Jena, M. 2018. Novel Trichoderma strains. isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiological Research 214: 83–90.

Wiśniewska, H., Basiński, T., Chełkowski, J. y Perkowski, J. 2011. Fusarium sporotrichioides Sherb. toxins evaluated in cereal grain with Trichoderma harzianum. Journal of Plant Protection Research 51(2): 134-139.

Xue, A.G., Guo, W., Chen, Y., Siddiqui, I., Marchand, G., Liu, J. y Ren, C. 2017. Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. Crop Protection 96: 97-102.

Zaidi, N.W., Singh, M., Kumar, S., Sangle, U.R., Sachitanand, R.S., Prasad, R., Singh, S.S., Singh, S., Yadav, A.K. y Singh, A. 2017. Trichoderma harzianum improves the performance of stress-tolerant rice varieties in rainfed ecologies of Bihar, India. Field Crops Research 220: 97-104.

Zhang, F., Wang, Y., Liu, C., Chen, F., Ge, H., Tian, F., Yang, T., Ma, K. y Zhang, Y. 2019. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety 170: 436–445.

Downloads

Download data is not yet available.