Intropica
Selection effect of the outgroup in the recovering the phylogenetic relationships of Gastropoda (Mollusca) using complete mitochondrial genomes
PDF (Español (España))

Keywords

Phylogeny
gastropods
mollusks

How to Cite

Uribe, J. E., & Castro, L. R. (2011). Selection effect of the outgroup in the recovering the phylogenetic relationships of Gastropoda (Mollusca) using complete mitochondrial genomes. Intropica, 6(1), 41–49. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/238

Abstract

Gasteropod evolutionary relationships are still not resolved and there are different publications with different hypothesis. The main objective of this study was to evaluate the effect of outgroup choice on the topology of the ingroup, taking into account that there is not an agreement in regards to which is the more closely related group to gastropods. Four different treatments were performed using the different classes of Mollusks hypothetically closer to gastropods as outgroups (Cephalopoda, Scaphopoda, Bivalvia and a all combined). These treatments were performed with two different datasets (aminoacids and nucleotide sequences excluding third codon positions) and two analyses were applied to each dataset (Parsimony and Bayesian), for a total of 16 analyses. In all the analyses, the ingroup relationships are not well recovered when using Scaphopoda as outgroup, as it gets recovered within the ingroup. The same happened with Bivalvia when using Parsimony and the nucleotide dataset. The more stable relatioships were observed when Cephalopoda was used as the outgroup, both in Parsimony and Bayesian analyses and with both type of datasets. In general, in most of the analysis we recovered the group ((Caenogastropoda+Neritimorpha)+V etigastropoda), as well as the group Patelogastropoda+Heterobranchia) with good statistical support. The Eutyneura group was recovered as paraphyletic for the inclusion of Pyramidelloidea dolabrata a Heterostropha member. The analyses including all the outgroups did not recovered well the relationship neither for Gastropoda nor for Mollusca. In general, the topologies of the phylogenetic trees using complete mitocondrial genomes on gastropods can be very affected by outgroup choice. We recommend precaution on the evaluation and selection of outgroups when working with this group.
PDF (Español (España))

References

Boore, J. L., D. Lavrov y W. M. Brown. 1998. Gene translocation links insects and crustaceans. Nature, 392:667–668

Boore J. L. y W. M. Brown. 2000. Mitochondrial Genomes of Galathealinum, Helobdella, and Platynereis:Sequence and Gene Arrangement Comparisons Indicate that PogonophoraIs Not a Phylum and nnelida and Arthropoda Are Not Sister Taxa. University of Michigan. Molecular Biology and Evolution 17(1):87–106.

Cameron, S. L., K. B. Miller, C. A. D’haese, M. F. Whiting y S. C. Barker. 2004. Mitochondrial genome data alone are not enough to unambiguously esolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics 20: 534 -557.

Castro, L. R. y D. J. Colgan. 2010. The phylogenetic position of Neritimorpha based on the mitochondrial genome of Nerita melanotragus (Mollusca: Gastropoda). Molecular Phylogenetics and Evolution 57 (2): 918 -23.

Castro, L. R. y M. Dowton. 2005. The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). Molecular Phylogenetics and Evolution 34: 469 -479.

Castro, L. R. y M. Dowton. 2006. Molecular Bayesian Analysis of the Apocrita (Insecta: Hymenoptera) suggests that the Chalcidoidea are sister to the (Monomachidae+Diapriidae+Maamingidae). Invertebrate Systematics 20: 603 -614.

Colgan, D. J., W. F. Ponder, E. Beacham y J. M. Macaranas. 2003.Gastropod phylogeny based on six segments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Research 23: 123-148.

Colgan, D. J., W. F. Ponder, E. Beacham y J. M. Macaranas. 2007. Molecular phylogenetic Caenogastropoda (Gastropoda:Mollusca). Molecular Phylogenetics and Evolution 42: 717-737.

Cunha, R., C. Y. Grande y R. Zardoya 2009. Neogastropod phylogenetic relationships based on entire mitochondrial genomes. Evolutionary Biololy 9: 210.

Gissi, C., D. S. Mauro, G. Pesole y R. Zardoya 2006. Mitochondrial phylogeny of Anura (Amphibia): A case study of congruent phylogenetic reconstruction using amino acid and nucleotide characters. Gene 366:228 -237.

Grande, C., J. Templado, J. L. Cervera y R. Zardoya. 2002. The complete mitochondrial genome of the nudibranch Roboastra europaea (Mollusca: Gastropoda) supports the monophyly of opisthobranchs. Molecular Biology and Evolution 19: 1672 -1685.

Grande, C., J. Templado, J. L. Cervera y R. Zardoya. 2004. Molecular phylogeny of Euthyneura (Mollusca: Gastropoda). Molecular Biology and Evolution 21: 303 -313.

Grande, C., J. Templado y R. Zardoya. 2008. Evolution of gastropod mitochondrial genome arrangements. Evolutionary Biology 8: 61.

Hall T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95 -98.

Harasewych, M. G. 2002. Pl eurotomar ioidean gastropods. Advances in Marine Biology 42: 235 -292.

Haszprunar, G. 1985. The fine morphology of the osphradial sense organs of the Mollusca. Part I: Gastropoda-Prosobranchia. Philosophical Transactions of the Royal Society B: Biological Sciences 307: 457 -496.

Haszprunar, G. 1988. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies 54: 367 -441.

Haszprunar, G. 2000. Is the Aplacophora monophyletic? A cladistic point of view. American Malacological Bulletin 15:115 -130.

Higgins, D., J. Thompson, T. Gibson, J. D. Thompson, D. G. Higgins y T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-pecific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-680.

Huelsenbeck, J. P. y F. R. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754 -755.

Klussmann-Kolb, A., A. Dinapoli, K. Kuhn, B. Streit y C. Albrecht. 2008. From sea to land and beyond _ New insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evolutionary Biology 8: 57.

Kocot, K. M., J. T. Cannon, C. Todt, M. R. Citarella, A. B. Kohn, A. Meyer, S. R. Santos, C. Schander, L. L. Moroz, B. Lieb y K. M. Halanych. 2011. Phylogenomics reveals deep molluscan relationships. Nature 477: 452- 56.

Nylander, J. 2004. MrModeltest 2.3. README. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Swenden. 2 p.

Podsiadlowski, L, A. Braband, T. Struck, J. Von Döhren y T. Bartolomaeus. 2009. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea. BMC Genomics 10: 364.

Ponder, W. F. y D. R. Lindberg. 1997. Towards a phylogeny of gastropod mollusks –an analysis using morphological characters. Zooogical Journal of the Linnean Society 19: 83-265.

Remigio, E. A. y P. D. N. Hebert. 2003. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships.Molecular Phylogenetics and Evolution 29: 641-647.

Roderick, D. M. 2001. TreeView (Win32) version 1.6.6. Division of Environmental and Evolutionary Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html 25/06/2010.

Rota-Stabelli, O. y M. J. Telford. 2008. A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for andibulata over Myriochelata using mitogenomics. Molecular Phylogenetics and Evolution 48: 103 -111

Russo, C. A., N. Takezaki y M. Nei. 1996. Efficiencies of different tree- uilding methods in recovering a known

vertebrate phylogeny. Molecular Biology and Evolution 13:

-536.

Downloads

Download data is not yet available.