Intropica
Effects of climate change on the potential distribution of sandflies transmitters of leishmaniasis in Merida Venezuela
PDF (Español (España))
HTML (Español (España))

Keywords

Distribution
Climate change
Lutzomyia
Leishmaniasis
MaxEnt
Sandflies

How to Cite

Nieves, E., Rujano, M., Ospino, H., Oraá, L., Rondón, Y., Sánchez, M., … Cazorla, D. (2015). Effects of climate change on the potential distribution of sandflies transmitters of leishmaniasis in Merida Venezuela. Intropica, 10(1), 60–73. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/1648

Abstract

Leishmaniasis is a serious public health problem in different parts of the world. It is known that the effects of climate change has been increasing in recent years by habitat changing of sandflies the short and long term what can impact the transmission of leishmaniasis. In the current work evaluates the effect of climate change on the geographical distribution of sandflies transmitters of cutaneous leishmaniasis in Merida Venezuela. The analysis includes 4 species, Lutzomyia youngi, L. gomezi, L. ovallesi and L. walkeri using an atmosphere-ocean model HadCM3 under the premise of climate change in a pessimistic scenario A2 with projections for 2020, 2050 and 2080. Results predicted an increased in distribution of L. youngi, while for L. gomezi changes in its future potential distribution. L. ovallesi was the species most affected presented changes at future distribution and distribution of L. walkeri not affected by climate change. In addition, the model in a climate change scenario predicts an overlap of the main transmitter species in the municipalities of greater population density, suggesting an increased risk of transmission of leishmaniasis in Merida state in the coming years, the maps generated provide information relevant to understanding of the transmission of leishmaniasis and to authorities in control and prevention.
PDF (Español (España))
HTML (Español (España))

References

Alexander, B. y Maroli, M. 2003. Control of phlebotomine sandflies. Medical and Veterinary Entomology 17: 1-18.

Alvar, J., Vélez, I., Bern, C., Herrero, M., Desjeux, P. y Cano, J. 2012. Leishmaniasis world wide and global estimates of its incidence. PLoS One 7(2): 1-12.

Anderson, R., Lew, D. y Peterson, A. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162: 211-232.

Ataroff, M. y Sarmiento, L. 2004. Las unidades ecológicas de los Andes de Venezuela. En: La Marca, E., Soriano, P. (eds). Reptiles de Los Andes de Venezuela. Fundación Polar, Codepre-ULA, Fundacite-Mérida. Biogeos.

Bässler, C., Müller, J., Hothorn, T. y Kneib, T. 2009. Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecological Indicators. 10: 341-352.

Benkova, I. y Volf, P. 2007. Effect of Temperature on Metabolism of Phlebotomus papatasi (Diptera: Psychodidae). Entomological Society of America 44: 150–154.

Blanco, J. 2013. Modelos ecológicos: descripción, explicación y predicción. Ecosistemas 22(3): 1-5.

Bounoua, L., Kahime, K., Houti, L., Blakey, T., Ebi, K., Zhang, P., Imhoff, M., Thome, K., Dudek, C., Sahabi, S., Messouli, M., Makhlouf, B., Laamrani, A. y Boumezzough, A. 2013. Linking climate to incidence of zoonotic cutaneous Leishmaniasis (L. major) in Pre-Saharan North Africa. International Journal of Environmental Research and Public Health 10: 3172-91.

Cabaniel, G., Rada, L., Blanco, J., Rodríguez, A. y Escalera, J. 2005. Impacto de los eventos de El Niño Southern oscillation (ENSO) sobre la leishmaniosis cutánea en Sucre, Venezuela, a través del uso de información satelital, 1994 - 2003. Revista Peruana de Medicina Experimental y Salud Publica 22: 32-38.

Campbell, D., Dujardin, J., Martínez, E., Feliciangeli, M., Pérez, J., Passerat de Silans, L. y Desjeux, P. 2001. Domestic and peridomestic transmission of American cutaneous leishmaniasis: changing epidemiological patterns present new control opportunities. Memórias do

Instituto Oswaldo Cruz 96: 159-162.

Cárdenas, R., Sandoval, C., Rodríguez, A. y Franco, C. 2006. Impact of climate variability in the occurrence of leishmaniasis in northeastern Colombia. American Journal of Tropical Medicine and Hygiene 75: 273-277.

Cross, E., Newcomb, W. y Tucker, C. 1996. Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. American Journal of Tropical Medicine and Hygiene 54: 451–6.

Cross, E. y Hyams, K. 1996. The potential effect of global warming on the geographic and seasonal distribution of Phebotomus papatasi in southwest Asia. Environmental Health Perspectives 104: 724-727.

Delgado, T. y Suarez, D. 2009. Efectos del cambio climático en la diversidad vegetal del corredor de conservación comunitaria Reserva Ecológica El Ángel- Bosque Protector Golondrinas en el norte del Ecuador. Ecología Aplicada 8(2):27-36.

Desjeux, P. 2001. The Increase in Risk Factors for the Leishmaniases Worldwide. Transactions Royal Society of Tropical Medicine and Hygiene 95(3): 239-243.

Donalisio, M., Peterson, A., Costa, P., da Silva, F., Valencia, H., Shaw, J. y Filho, S. 2012. Microspatial Distributional Patterns of Vectors of Cutaneous Leishmaniasis in Pernambuco, Northeastern Brazil. Journal of Tropical Medicine 2012: 1-8.

Feliciangeli, M. 1987. Ecology of sandflies (Diptera:Psychodidae) in a restricted focus of cutaneous leishmaniasis in northern Venezuela. III. Seasonal fluctuation. Memórias do Instituto Oswaldo Cruz 82: 167-176.

Fischer, D., Thomas, S. y Beierkuhnlein, C. 2011. Modelling climatic suitability and dispersal for disease vectors: the example of a phlebotomine sandfly in Europe. Procedia Environmental Sciencies 7: 164-169.

Gaertner, M., Gutiérrez, J. y Castro, M. 2012. Escenarios regionales de cambio climático. Revista Española de Física 26(2): 1-8.

González, C., Wang, O., Strutz, S., González, C., Sánchez, V. y Sarkar, S. 2010. Climate Change and Risk of Leishmaniasis in North America: Predictions from Ecological Niche Models of Vector and Reservoir Species. PLoS Neglected Tropical Diseases 4: 1-15.

González, C., Paz, A. y Ferro, C. 2014. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios. Colombia. Acta Tropica 129(2014): 83-90.

Gordon, C., Cooper, C., Senior, C., Banks, H., Gregory, J., Johns, T., Mitchell, J. y Wood, R. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16: 147-168.

Graham, C., Moritz, C. y Williams, S. 2006 Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences 103: 632-636.

Hartemink, N., Vanwambeke, S., Heesterbeek, H., Rogers, D., Morley, D., Pesson, B., Davies, C., Mahamdallie, S. y Ready, P. 2011. Integrated mapping of establishment risk for merging vector-borne infections: a case study of canine leishmaniasis in southwest France. PLoS One 6(8): 1-12.

Hijmans, R., Cameron, S., Parra, J., Jones, P. y Jarvis, A. 2005a.Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

Hijmans, R., Guarino, L., Jarvis, A., O’Brien, R. y Mathur, P. 2005b. DIVA-GIS, versión 7.5. URL: http://www.diva-gis.org/. Consultado: 25 julio 2014.

Honty, G. 2011. Cambio climático: Negociaciones y consecuencias para América Latina. CLAES - Centro Latino Americano de Ecología Social, Uruguay.

Kigadye, E., Nkwengulila, G., Magesa, S., Abdulla, S. 2010. Diversity, spatial and temporal abundance of Anopheles gambiae complex in the Rufiji River basin, south-eastern Tanzania. Tanzania Journal of Health Research 12: 68-72.

Kilpatrick, A., Fonseca, D., Ebel, G., Reddy, M. y Kramer, L. 2010. Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. American Journal of Tropical Medicine and Hygiene 77: 667–671.

Kuhn, K. 1999. Global warming and leishmaniasis in Italy. Bull. Tropical Medicine International Health 7: 1–2.

Loiola, C., da Silva, D. y Galati, E. 2007. Phlebotomine fauna (Diptera: Psychodidae) and species abundance in an endemic area of American cutaneous leishmaniasis in southeastern Minas Gerais, Brazil. Memórias do Instituto Oswaldo Cruz 102(5): 581-585.

López, R. y Molina, R. 2005. Cambio climático en España y riesgo de enfermedades infecciosas y parasitarias transmitidas por artrópodos y roedores. Revista Española de Salud Pública 79(2): 177-190.

Lugo, Y., Premoli, G. y Moreno, E. 1999. Detection of localized cutaneous leishmaniasis using conventional assay and Polymerase Chain Reaction: a report on three Venezuelan family groups. Boletín Dirección Malariología Saneamiento Ambiental 39: 20-26.

Lugo, Y., Valera, M., Alarcón, M., Moreno, E., Premoli, G. y Colasante, C. 2003. Detección de Leishmania (Viannia) braziliensis en el endotelio vascular de lesiones de pacientes con leishmaniasis cutánea localizada. Investigación Clínica 44: 61-76.

Magnuson, J. 2001. 150-year global ice record reveals major warming trend. International American Institute Global Change Research 24: 22–25.

Maingon, R., Feliciangeli, D., Guzmán, B., Rodríguez, N., Convit, J., Adamson, R., Chance, M., Petralanda, I., Dougherty, M. y Ward, R. 1994. Cutaneous leishmaniasis in Táchira state, Venezuela. Annals Tropical Medical Parasitology 88: 29-36.

Moo, D., Ibarra, C., Rebollar, E., Ibáñez, S., González, C. y Ramsey, J. 2013. Current and future niche of North and Central American sand flies (Diptera: Psychodidae) in climate change scenarios. PLoS Neglected Tropical Diseases 7(9): 1-13.

Moreno, E. y Scorza, J. 1998. Productos de excreción de Leishmania spp. de la región Andino – Venezolana. Revista de Ecología Latinoamericana Ambiental 5: 53-60.

Neuber, H. 2008. Leishmaniasis. Journal der Deutschen Dermatologischen Gesellschaft Impact Factor y Information 6: 754-765.

Nieves, E., Oraá, L., Rondón, Y., Sánchez, M., Sánchez, Y., Rujano, M., Rondón, M., Rojas, M., González, N. y Cazorla, D. 2014a. Riesgo de transmisión de Leishmania (Kinetoplastida: Trypanosomatidae) en Mérida Venezuela. Avances en Biomedicina 3: 57-64.

Nieves, E., Oraá, L., Rondón, Y., Sánchez, M., Sánchez, Y., Rojas, M., Rondón, M., Rujano, M., González, N. y Cazorla, D. 2014b. Effect of Environmental Disturbance on the Population of Sandflies and Leishmania Transmission in an Endemic Area of Venezuela. Journal of Tropical Medicine 2014: 1-7.

Nieves, E., Oraá, L., Rondón, Y., Sánchez, M., Sánchez, Y., Rujano, M., Rondón, M., Rojas, M., Gonzalez, N. y Cazorla, D. 2015. Distribution of Vector Sandflies Leishmaniasis from an Endemic Area of Venezuela. Journal Tropical Diseases 3: 1-7.

OMS. 2010. Control de la Leishmaniasis. Serie de Informes Técnicos 949. Ginebra, Suiza.

Oraá, L. 2013. Distribución, diversidad e influencia de variables ambientales y antropogénicas en las principales especies de flebotominos en Mérida–Venezuela. Tesis de Grado. Universidad de Los Andes. Mérida, Venezuela.

Pabón, J. y Nicholls, R. 2005. El cambio climático y la salud humana. Biomédica 25(1): 1-4.

Parra, G. 2010. Sistemas de información geográfica y sensores remotos. Aplicaciones en enfermedades transmitidas por vectores. CES Medicina 24(2): 75-89.

Peterson, A. y Robins, C. 2003. Using ecological-niche modeling to predict barred owl invasions with implications for spotted owl conservation. Conservation Biology 17: 1161-1165.

Peterson, A. y Shaw, J. 2003. Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. International Journal Parasitology 33: 919-931.

Peterson, A. 2006. Ecologic niche modeling and spatial patterns of disease transmission. Emerging Infectious Diseases 12: 1822-1826.

Phillips, J., Anderson, P. y Schapire, E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190: 231-259.

Phillips, J. y Dudik, M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31: 161-175.

Pope, V., Gallani, M., Rowntree, P. y Stratton, R. 2000. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dynamics 16: 123–146.

Ready, P. 2008. Leishmaniasis emergence and climate change. Revue scientifique et technique 27(2): 399-412.

Reiter, P. 2001. Climate change and mosquito borne disease. Environmental Health Perspectives 109(1): 141–161.

Rodríguez, N., Carrero, R., De Lima, H., Sandoval, I., Fernández, A. y Barrios, M. 2007. Impacto de Fenómenos Naturales (Deslaves y vaguadas) sobre la epidemiologia de la Leishmaniasis cutánea en zonas del estado Mérida. Salus 11: 43-47.

Rodríguez, A., González, Y., Benítez, J., López, M., Harter, R., Vilca, L. y Cárdenas, R. 2010. Asociación entre la incidencia de leishmaniosis cutánea y el índice de desarrollo humano y sus componentes en cuatro estados endémicos de Venezuela. Revista Peruana de Medicina Experimental y Salud Pública 27: 22-30.

Rondón, Y. 2015. Detección Parasitológica y Molecular de Leishmania en el Intestino de Flebotominos Vectores. Tesis de Grado. Universidad de Los Andes. Mérida Venezuela. 82p

Salomón, O., Rosa, J., Stein, M., Quintana, M., Fernández, M., Visintin, A., Spinelli, G., Bogado de Pascual, M., Molinari, M., Morán, M., Valdez, D. y Romero, M. 2008. Phlebotominae (Diptera: Psycodidae) fauna in the Chaco región and Cutaneous Leishmaniasis transmission patterns in Argentina. Memórias do Instituto Oswaldo Cruz 103(6): 578-584.

Sánchez, I., Liria, J. y Feliciangeli, M. 2015. Ecological Niche Modeling of Seventeen Sandflies Species (Diptera, Psychodidae, Phlebotominae) from Venezuela. International Journal of Zoology 2015: 1-9.

Scheldeman, X., y Van Zonneveld, M. 2011. Manual de capacitación en análisis espacial de diversidad y distribución de plantas. Bioversity International.

Scorza, J., Valera, M., Moreno, E. y Jaimes, R. 1983. Epidemiologic survey of cutaneous leishmaniasis: an experience in Merida, Venezuela. Bulletin Panamerican Health Organ 7: 361- 373.

Scorza, J., Castillo, L., Rezzano, S., Márquez, M. y Márquez, J. 1985. El papel del cafeto en la endemicidad de la leishmaniasis cutánea en Venezuela. Boletín Malariología Saneamiento Ambiental 25: 82-88.

Shaw, J. 2007. The leishmaniases: survival and expansion in a changing world. A mini-review. Memórias do Instituto Oswaldo Cruz 102: 541-547.

Stott, P., Tett, S., Jones, G., Allen, M., Ingram, W. y Mitchell, J. 2001. Attribution of Twentieth Century Temperature Change to Natural and Anthropogenic Causes. Climate Dynamics 17: 1-22.

Sutherst, R. 2001. Global change and human vulnerability to Vector-Born diseases. Clinical Microbiology Reviews 5: 136-73.

Thomson, M., Elnaiem, D., Ashford, R. y Connor, S. 1999. Towards a kalaazar risk map for Sudan: mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables. Tropical Medicine International Health 4: 105-113.

Valderrama, A., Tavares, M. y Andrade, J. 2011. Anthropogenic influence on the distribution, abundance and diversity of sandfly species (Diptera: Phlebotominae: Psychodidae), vectors of cutaneous Leishmaniasis in Panama. Memórias do Instituto Oswaldo Cruz 106(8): 1024-1031.

Valera, M., Moreno, E. y Scorza, J. 1978. Cincuenta y seis casos de leishmaniasis tegumentaria en la cuenca de los ríos Chama - Mocotíes (Estado Mérida, Venezuela). Boletín Dirección Malariología Saneamiento Ambiental 28: 238-247.

Varela, S., Mateo, R., García, R. y Fernández, F. 2014. Macroecología y ecoinformática: sesgos, errores y predicciones en el modelado de distribuciones. Ecosistemas 23(1): 46-53.

Vásquez, A., González, A., Góngora A., Prieto, E., Suárez, E. y Buitrago, L. 2013. Seasonal variation and natural infection of Lutzomyia antunesi (Diptera: Psychodidae: Phlebotominae), an endemic species in the Orinoquia region of Colombia. Memorias Instituto Oswaldo Cruz 108(4): 463-469.

Wang, X., Huang, X., Jiang, L. y Qiao, G. 2010. Predicting potential distribution of chestnut phylloxerid (Hemiptera: Phylloxeridae) based on GARP and Maxent ecological niche models. Journal of Applied Entomology 134: 45-54.

Wisz, M., Hijmans, R., Li, J., Peterson, A., Graham, C. y Guisan, A. 2008. Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763-773.

Young, D. y Duncan, M. 1994. Guide to the identification and geographic distribution of Lutzomyia sandflies in México, the West Indies, Central and South America (Diptera: Psychodidae). Memories of the American Entomological 54: 779-881.

Downloads

Download data is not yet available.