Intropica
Metabolic activity of sediments on altitudinal gradient in tropical stream mountain during drought events, Sierra Nevada de Santa Marta-Colombia
PDF (Español (España))

Keywords

Metabolism
sediment
elevation gradient

How to Cite

Orozco-Berdugo, G., Rodríguez-Barrios, J., & Ospina-Torres, R. (2012). Metabolic activity of sediments on altitudinal gradient in tropical stream mountain during drought events, Sierra Nevada de Santa Marta-Colombia. Intropica, 7(1), 47–57. Retrieved from https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/163

Abstract

The metabolic activity of sediments was measured over an altitudinal gradient in a mountain tropical river (Sierra Nevada de Santa Marta – Colombia). It was related along the river basin with climatic and hydrologic parameters during the dry season. Additionally, observations of the metabolic activity and the variation of the P/R ratio during a day were made. Measures were made with a light-dark bottle method and two hours exposition. For the estimation of the real area, images of previously weighted subsamples of sediment were processed with an ImageJ 1.40g computer program. Over the altitudinal gradient we find that community respiration (CR) was higher than the gross primary productivity (GPP), also P/R < 1. The light intensity was the most important variable and was related with the P/R ratio on the upper basin and with GPP over the entire gradient. Our results shows that the substrate sediment is strong heterotrophic over the entire basin but mainly on the middle part of the river.
PDF (Español (España))

References

APHA. 1985. Standard methods for the examination of water and waste water, 16th ed. American Public Health Association, Washington.

Benke, A., C. Hall, C. Hawkins, R. Lowe-Mcconnel, J. Stanford, K. Subberkropp y J. Ward. 1988. Bioenergetics considerations in the analysis of stream ecosystems. Journal of the North American Benthological Society 7: 480-502.

Bott, T. 1996. Primary productivity and community respiration, pp. 533- 56. En: Hauer F. y G. Lamberti. Methods in Stream Ecology. Academic Press, San Diego, CA.

Bott, T., J. Brock, C. Dunn, R. Nainman, R. Ovink y R. Petersen. 1985. Benthic community metabolism in four temperate stream systems: an interbioma comparison and evaluation of the river continuum concept. Hydrobiology 123: 3-45.

Chessman, B. 1985. Estimates of Ecosystem Metabolism in the La Trobe River, Victoria. Australian Journal Marine Freshwater Research 36: 873-80.

Contreras, V., E. Jiménez, R. Pabón y O. Valeros. 2000. Plan de manejo integral de la cuenca hidrográfica del río Gaira. Trabajo de grado. Universidad del Magdalena. Magdalena, Santa Marta. pp. 34-105.

Elósegui. A. y J. Pozo. 1998. Biomasa epilitica y metabolismo en un rio en l norte ibérico. Aquatic Sciences 60:1–16.

Frissell, C., W. Liss, C. Warren y M. Hurley. 1986. A hierarchical framework for stream classification: viewing streams in a watershed context. Environmental Management. 10: 199-214.

Gutiérrez, J. 2006. Caracterización del metabolismo y de la oferta de recursos de materia orgánica para la fauna de macroinvertebrados bentónicos en una quebrada de montaña de orden menor. Tesis Doctoral. Departamento de Biología. Universidad Nacional de Colombia. Bogotá. pp. 17-42.

Hall, R. y J. Tank. 2003. Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnology and Oceanography 48: 1120-1128.

Hansmann, E., C. Lane y J. Hall. 1971. A direct method of measuring benthic primary production in streams. Limnology and Oceanogrophy 16: 822-825.

Http://rsb.info.nih.gov/ij/. Programa computacional. ImageJ 1.40g National Institutes of Health, EE.UU.

Lancaster, J. y A. Hildrew. 1993. Characterizing in-stream flow refugia. Canadian Journal Fisheries Aquatic Sciences 50:1663-1675 En: Gutiérrez, J. 2006. Caracterización del metabolismo y de la oferta de recursos de materia orgánica para la fauna de macroinvertebrados bentónicos en una quebrada de montaña de orden menor. Documento de tesis Doctoral. Departamento de Biología. Universidad Nacional de Colombia. Bogotá. pp. 7-42.

Leopold, L. y T. Maddock. 1953. The hydraulic geometry of stream channels and some physiographic implications. Geological Survey Professional Papaper 252:57

Mcintire, C., R. Garrinson, H. Phinney y C. Warren. 1964. Primary production in laboratory streams. Limnology and Oceanogaphy. 9:92-102

Minshall, G., 1978. Autotrophy in stream ecosystems. Bioscience 28: 767-771

Mulhollan, P., C. Fellows, J. Tank, N. Grimm, J. Webster, S. Hamilton, E. Martí, L. Ashkenas, W. Bowden, W. Dodds, W. Mcdowell, M. Paul y B. eterson. 2001. Inter-biome comparison of factors controlling stream etabolism. Freshwater Biology 46: 1503–1517.

Ortiz-Zayas. J., W. Lewis, J. Saunders, J. Mccutchan y F. Scatena. 2005. Metabolism of a tropical rainforest stream. Journal North American Benthological Society 24(4): 769–783.

Sabater. S y A. Romani. 1999. Efectos de los productores primarios sobre l metabolismo heterotrófico de las biopelículas en un río. Freshwater Biology 41: 729-736

Talling, J y J. Lemoalle. 1998. Ecological dynamics of tropical island waters. Cambridge University Press, Cambridge, Reino Unido. pp. 117.

Tamariz-Turizo, C. y H. López-Salgado. 2006. Aproximación a la zonificación climática del río Gaira. Revista Intropica. 3: 69-76.

Uehlinger, U. 2000. Resistance and resilience of ecosystem metabolism in a flood-prone river system. Freshwater Biology 45: 319-332.

Vannote, R., G. Minshall, K. Cummins, J. Sedell, y C. Cushing. 1980. The river continuum concept. Canadian Journal Fisheries Aquatic Sciences 37: 130-137.

Whitledge, G. y C. Rabeni, 2000. Benthic community metabolism in three habitats in an Ozark stream. Hydrobiology 437: 165–170.

Young, R., C. Matthaei y C. Townsend. 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal North American Benthological Society 27 (3):605-625.

Downloads

Download data is not yet available.