Efectos positivos del campo magnético en plantas cultivadas

Cómo citar

Lasso-Rivas, N. (2019). Efectos positivos del campo magnético en plantas cultivadas. Intropica, 14(2). Recuperado a partir de http://revistas.unimagdalena.edu.co/index.php/intropica/article/view/3066


Esta revisión describe los efectos del campo magnético en el crecimiento y rendimiento de plantas cultivadas, se basa en referencias obtenidas de las bases de datos Springer, Science Direct, Scielo, ResearchGate, EBSCO y Google Académico empleando como descriptores: tratamiento magnético, producción de cultivos, agua tratada magnéticamente y germinación de semillas. La introducción ofrece una breve descripción de las características del campo magnético de la tierra, sus unidades de medida y una justificación del interés en el estudio de los efectos del campo magnético en las plantas cultivadas. Luego se discute el efecto de la exposición directa de las semillas de diferentes especies cultivas a campos magnéticos estáticos y/o alternos en relación con la germinación y diversos parámetros de crecimiento y rendimiento; también se explora el efecto positivo del tratamiento con campos magnéticos en la tolerancia de las plantas a los efectos negativos generados por el estrés abiótico. Finalmente se discuten los efectos del tratamiento con agua tratada magnéticamente. Se concluye que debido a la amplia variedad de efectos positivos que generan los tratamiento con campos magnéticos, los cuales van desde la mejora en la germinación de las semillas hasta la protección contra los efectos nocivos causados por algunos tipos de estrés abiótico, existe una gran potencial para que estos puedan ser implementados con el objetivo de mejorar el crecimiento y rendimiento de algunos cultivos.

Palabras clave

campo magnético; germinación de semillas; agua tratada magnéticamente; estrés abiótico; crecimiento; rendimiento

Referencias bibliográficas

Aghamir, F., Bahrami, H., Eshghi, S., Bahrami, H., Malakouti, M.J. y Sharifi, F. 2016. Seed germination and seedling growth of bean (Phaseolus vulgaris) as influenced by magnetized saline water. Eurasian Journal of Soil Science 5(1): 39–46.

Aguilar, C.H., Domínguez-Pacheco, A., Carballo-Carballo, A., Cruz-Orea, A., Ivanov, R., López-Bonilla, J.L. y Valcarcel, J.P. 2009. Alternating magnetic field irradiation effects on three genotype maiz seed field performance. Acta Agrophysica 14(1):7–17.

Aladjadjiyan, A. 2002. Study of the influence of magnetic field on some biological characteristics of Zea mays. Journal of Central European Agriculture 3(2): 90–94.

Alexieva, V., Sergiev, I., Mapelli, S. y Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24(12): 1337–1344.

Amer, M. 2014. Effects of magnetized low quality irrigation water on some soil properties and soybean yield (Glycine max L.) under salt affected soils conditions. Journal of Soil Sciences and Agricultural Engineering 5(10): 1388–2014.

Amor, H., Elaoud, A., Elmoueddeb, K. y Hussain, Q. 2018. Influence of magnetic field on water characteristics and potato cultivation. Journal of Environmental and Agricultural Sciences 16: 32–41.

Anand, A., Nagarajan, S., Verma, A.P.S., Joshi, D.K., Pathak, P.C. y Bhardwaj, J. 2012. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry and Biophysics 49(1): 63–70.

Azimi, N., Majd, A., Nejadsattari, T., Ghanati, F. y Arbabian, S. 2018. Effects of Magnetically Treated Water on Physiological Characteristics of Lens culinaris L. Iranian Journal of Science and Technology, Transactions A: Science 42(2): 331–337.

Babaloo, F., Majd, A., Arbabian, S., Sharifnia, F. y Ghanati, F. 2018. The effect of magnetized water on some characteristics of growth and chemical constituent in rice (Oryza sativa L.). Eurasian Journal of Biosciences 12(1): 129–137.

Baghel, L., Kataria, S. y Guruprasad, K.N. 2016. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics 37(7): 455–470.

Baghel, L., Kataria, S. y Guruprasad, K.N. 2018. Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica 56(2): 718–730.

Baghel, Lokesh, Kataria, S. y Jain, M. 2019. Mitigation of adverse effects of salt stress on germination, growth, photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobotanica 72(1): 1-16.

Ballaré, C.L., Caldwell, M.M., Flint, S.D., Robinson, S.A. y Bornman, J.F. 2011. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochemical & Photobiological Sciences 10(2): 226–241.

Barnabás, B., Jäger, K. y Fehér, A. 2007. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment 31(1): 11-38.

Belyavskaya, N.A. 2004. Biological effects due to weak magnetic field on plants. Advances in Space Research 34(7): 1566–1574.

Bilalis, D.J., Katsenios, N., Efthimiadou, A. y Karkanis, A. 2012. Pulsed electromagnetic field: an organic compatible method to promote plant growth and yield in two corn types. Electromagnetic Biology and Medicine 31(4): 333–343.

Cakmak, T., Dumlupinar, R. y Erdal, S. 2009. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 31(2): 120-129.

Carbonell, M.V., Martínez, E. y Amaya, J. M. 2000. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro and Magnetobiology 19(1): 121–128.

Carbonell, M.V., Flórez, M., Martínez, E., Maqueda, R. y Amaya, J. M. 2011. Study of stationary magnetic fields on initial growth of pea (Pisum sativum L.) seeds. Seed Science and Technology 39(3): 673–679.

Carbonell, M.V, Florez, M., Martínez, E. y Álvarez, J. 2017. Aportaciones sobre el campo magnético: historia e influencia en sistemas biológicos. Intropica 12 (2): 143- 159.

Chen, Y.P., He, J.M. y Li, R. 2012. Effects of magnetic fields pretreatment of mungbean seeds on sprout yield and quality. African Journal of Biotechnology 11(36): 8932–8937.

Chibowski, E. y Szcześ, A. 2018. Magnetic water treatment–A review of the latest approaches. Chemosphere 203: 54–67.

De Souza, A., García, D., Sueiro, L., Gilart, F., Porras, E. y Licea, L. 2006. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27(4): 247–257.

De Souza, A., Sueiro, L., García, D. y Porras, E. 2010. Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Science and Technology 38(1): 61–72.

Efthimiadou, A., Katsenios, N., Karkanis, A., Papastylianou, P., Triantafyllidis, V., Travlos, I. y Bilalis, D.J. 2014. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and Lycopene Content. The Scientific World Journal 369745: 1–6.

Fahad, S., Hussain, S., Saud, S., Khan, F., Hassan, S., Nasim, W., Arif, M., Wang, F. y Huang, J. 2016. Exogenously Applied Plant Growth Regulators Affect Heat-Stressed Rice Pollens. Journal of Agronomy and Crop Science 202(2): 139–150.

Fahad, Shah, Bajwa, A., Nazir, U., Anjum, S., Farooq, A., Zohaib, A., Sadia, S., Wajid, N., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H., Wu, Ch. Wang, D. y Huang, J. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8 (1147): 1-16.

Feychting, M., Ahlbom, A. y Kheifets, L. 2005. EMF and health. Annual Review of Public Health 26(1): 165–189.

Galland, P. y Pazur, A. 2005. Magnetoreception in plants. Journal of Plant Research 118(6): 371–389.

Guruprasad, K.N., Shine, M. y Joshi, J. 2016. Impact of Magnetic Field on Crop Plants. In iConcept Press. Editor. Breeding and Genetic Engineering: The Biology and Biotechnology Research. In iConcept Press, London.

Haq, Z. ul, Iqbal, M., Jamil, Y., Anwar, H., Younis, A., Arif, M., Zeshan Fareed, M. y Hussain, F. 2016. Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Information Processing in Agriculture 3(2): 99–106.

Hasan, M., Alharby, H., Hajar, A., Hakeem, K., y Alzahrani, Y. 2018. Effects of magnetized water on phenolic compounds,lipid peroxidation and antioxident activity of Moringa species under drought stress. The Journal of Animal & Plant Sciences 28(3): 803–810.

Hilal, M.H., El-Fakharaniy, Y.M., Mabrouk, S.S., Mohamed A.I. y Ebead, B.M. 2013. Effect of magnetic treated irrigation water on salt removal from a sandy soil and on the availability of certain nutrients. Journal of Engineering and Applied Sciences 2(2): 36-44.

Hozayn, M. y Qados, A.M.S.A. 2010 a. Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agriculture and Biology Journal of North America 1(4): 671–676.

Hozayn, M. y Qados, A.M.S.A. 2010 b. Magnetic water application for improving wheat (Triticum aestivum L.) crop production. Agriculture and Biology Journal of North America 1(4): 677-682.

Hozayn, M., El Monem, A. A. A., Abdelraouf, R.E. y Abdalla, M.M. 2013. Do Magnetic Water Affect Water Use Efficiency, Quality and Yield of Sugar Beet (Beta vulgaris L.) Plant under Arid Regions Conditions?. Journal of Agronomy 12(1): 1–10.

Hozayn, M., EL-Mahdy, A.A.A. y Abdel-Rahman, H.M. 2015. Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). African Journal of Agricultural Research 10(8): 849–857.

Ibrahim, A. y Bassem, M. 2013. Effect of irrigation with magnetically treated water on faba bean growth and composition. International Journal of Agricultural Policy and Research 1(2): 24–40.

Iqbal, M., ul Haq, Z., Malik, A., Ayoub, C. M., Jamil, Y., y Nisar, J. 2016 a. Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatalysis and Agricultural Biotechnology 5: 30–37.

Iqbal, M., Haq, Z. ul, Jamil, Y. y Nisar, J. 2016 b. Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.). Biocatalysis and Agricultural Biotechnology 6: 176–183.

Izmailov, A., Smirnov, I., Khort, D., Filippov, R. y Kutyrev, A. 2018. Magnetic-pulse processing of seeds of berry crops. Research in Agricultural Engineering 64(4): 181–186.

Javed, N., Ashraf, M., Akram, N.A, y Al-Qurainy, F. 2011. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochemistry and Photobiology 87(6): 1354–1362.

Karimi, S., Eshghi, S., Karimi, S. y Hasan-Nezhadian, S. 2017. Inducing salt tolerance in sweet corn by magnetic priming. Acta Agriculturae Slovenica 109(1): 89.

Kataria, S., Baghel, L. y Guruprasad, K.N. 2017 a. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agricultural Biotechnology 10: 83–90.

Kataria, S., Baghel, L. y Guruprasad, K.N. 2017 b. Alleviation of adverse effects of ambient UV stress on growth and some potential physiological attributes in soybean (Glycine max ) by seed pre-treatment with static magnetic field. Journal of Plant Growth Regulation 36(3): 550–565.

Kataria, S., Baghel, L., Jain, M. y Guruprasad, K.N. 2019. Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology 18: 101090.

Konefał-Janocha, M., Banaś-Ząbczyk, A., Bester, M., Bocak, D., Budzik, S., Górny, S. y Cholewa, M. 2018. The effect of stationary and variable electromagnetic fields on the germination and early growth of radish (Raphanus sativus). Polish Journal of Environmental Studies 28(2): 709–715.

Kornarzyński, K., Dziwulska-Hunek, A., Kornarzyńska-Gregorowicz, A. y Sujak, A. 2018. Effect of electromagnetic stimulation of amaranth seeds of different initial moisture on the germination parameters and photosynthetic pigments content. Scientific Reports 8(1): 14023.

Krishnaraj, C., Yun, S.I. y Kumar, A. 2017. Effect of magnetized water (Biotron) on Seed Germination of Amaranthaceae family. Journal of Academia and Industrial Research 5(10): 152–156.

Liu, X., Zhu, H., Meng, S., Bi, S., Zhang, Y., Wang, H. y Ma, F. 2019. The effects of magnetic treatment of irrigation water on seedling growth, photosynthetic capacity and nutrient contents of Populus × euramericana ‘Neva’ under NaCl stress. Acta Physiologiae Plantarum 41(1): 11.

Maheshwari, B.L., y Grewal, H.S. 2009. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural Water Management 96(8): 1229–1236.

Mahmood, S. y Usman, M. 2014. Consequences of magnetized water application on maize seed emergence in sand culture. Journal of Agricultural Science and Technology (JAST) 16(1): 47–55.

Majd, A., Shabrangi, A., Bahar, M. y Abdi, S. 2009. Effect of AC and DC magnetic fields on seed germination and early vegetative growth in Brassica napus L. Progress In Electromagnetics Research 18(710–714): 18–21.

Martínez, E., Carbonell M.V, Flórez, M. y Maqueda, R. 2009. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. International Agrophysics 23: 45–49.

Martínez, E., Flórez, M. y Carbonell, M.V. 2017. Stimulatory effect of the magnetic treatment on the germination of cereal seeds. International Journal of Environment, Agriculture and Biotechnology 2(1): 375–381.

Massah, J., Dousti, A., Khazaei, J. y Vaezzadeh, M. 2019. Effects of water magnetic treatment on seed germination and seedling growth of wheat. Journal of Plant Nutrition 42 (11-12): 1–7.

Moon, J.D. y Chung, H.S. 2000. Acceleration of germination of tomato seed by applying AC electric and magnetic fields. Journal of Electrostatics 48: 103- 114.

Montriwat, P. y Limpanuparb, T. 2016. Exposure of plants to static electromagnetic fields: the early growth of basil and waxy corn. Suranaree Journal of Science & Technology 23(3): 333–341.

Moussa, H. 2011. The impact of magnetic water application for improving common bean (Phaseolus vulgaris L.) production. New York Science Journal 4(6): 15-20.

Mridha, N., Chattaraj, S., Chakraborty, D., Anand, A., Aggarwal, P. y Nagarajan, S. 2016. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress. Bioelectromagnetics 37(6): 400–408.

Nessrien, S.A.K. 2018. Evaluation of Magnetizing Irrigation Water Impacts on the Enhancement of Yield and Water Productivity for Some Crops. Journal of Agricultural Science and Technology A 8(5): 274-286.

Nimmi, V.M.G. 2009. Effect of pre-sowing treatment with permanent magnetic field on germination and growth of chilli (Capsicum annum L.). International Agrophysics 23(2): 195–198.

Occhipinti, A., De Santis, A, y Maffei, M.E. 2014. Magnetoreception: an unavoidable step for plant evolution?. Trends in Plant Science 19(1): 1–4.

Pang, X. y Deng, B. 2008. Investigation of changes in properties of water under the action of a magnetic field. Science in China Series G: Physics, Mechanics and Astronomy 51(11): 1621–1632.

Pietruszewski, S. y Kania, K. 2010. Effect of magnetic field on germination and yield of wheat. International Agrophysics 24(3): 297–302.

Pietruszewski, S. y Martínez, E. 2015. Magnetic field as a method of improving the quality of sowing material: a review. International Agrophysics 29(3): 377–389.

Radhakrishnan, R. y Kumari, B.D.R. 2013. Protective role of pulsed magnetic field against salt stress effects in soybean organ culture. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology 147(1): 135–140.

Radhakrishnan, R. 2018. Seed pretreatment with magnetic field alters the storage proteins and lipid profiles in harvested soybean seeds. Physiology and Molecular Biology of Plants 24(2): 343–347.

Radhakrishnan, R., Kumari, R. y Bollipo, D. 2012. Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry 51:139–144.

Rajendra Prasad, S., Kamble, U.R., Sripathy, K.V., Udaya Bhaskar, K. y Singh, D.P. 2016. Seed Bio-priming for Biotic and Abiotic Stress Management. In: Singh, D.P., Singh, H.B., Prabha, R. Editor. Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi.

Rathod, G. R. y Anand, A. 2016. Effect of seed magneto-priming on growth, yield and Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Indian Journal of Plant Physiology 21(1): 15–22.

Ray, D.K., Mueller, N.D., West, P.C. y Foley, J.A. 2013. Yield Trends Are Insufficient to double global crop production by 2050. PLoS ONE 8(6): e66428.

Razmjoo, J. y Alinian, S. 2017. Influence of magnetopriming on germination, growth, physiology, oil and essential contents of cumin (Cuminum cyminum L.). Electromagnetic Biology and Medicine 36(4): 325–329.

Ružič, R. y Jerman, I. 2002. Weak magnetic field decreases heat stress in cress seedlings. Electromagnetic Biology and Medicine 21(1): 69–80.

Selim, A.F.H. y El-Nady, M.F. 2011. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronautica 69(7–8): 387–396.

Shine, M.B., Guruprasad, K.N. y Anand, A. 2011. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics 32(6): 474–484.

Shine, M., Kataria, S., Guruprasad, K. y Anand, A. 2017. Enhancement of maize seeds germination by magnetopriming in perspective with reactive oxygen species. Journal of Agricultural and Crop Research 5(4): 66–76.

Sudsiri, C. J., Nattawat, J., Kongchana, P. y Ritchie, R. J. 2016. Effect of magnetically treated water on germination and seedling growth of oil palm (Elaeis guineensis). Seed Science and Technology 44(2). 267–280.

Teixeira da Silva, J.A. y Dobránszki, J. 2014. Impact of magnetic water on plant growth. Environmental and Experimental Biology 12(4): 137–142.

Thomas, S., Anand, A., Chinnusamy, V., Dahuja, A. y Basu, S. 2013. Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiologiae Plantarum 35(12): 3401–3411.

Torres, J.I., Aranzazu-Osorio Y., Jainer, E. y Carbonell, M.V. 2015. Efecto del campo magnético estático homogéneo en la germinación y absorción de agua en semillas de soja. Tecno Lógicas 18(35):11–20.

Torres, J., Socorro, A. y Hincapié, E. 2018. Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.). Bioelectromagnetics 39(5): 343–351.

Vashisth, A. y Nagarajan, S. 2008. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics 29(7): 571–578.

Vashisth, A. y Nagarajan, S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167(2): 149–156.

Vashisth, A. y Devendra, K. 2017. Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics 38(2): 151–157.

Vinebrooke, R., Cottingham, K.L., Norberg, M., Scheffer, J., Dodson, S., Maberly, S. y Sommer, U. 2004. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104(3): 451–457.

Yao, Y., Li, Y., Yang, Y. y Li, C. 2005. Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environmental and Experimental Botany 54(3): 286–294.

Yusuf, K., Ogunlela, A. y Murtala, M. 2016. Effects of magnetically treated water on germination and growth of tomato (Lycopersicon esculentum: Variety uc82b) under poor soil fertility and deficit irrigation. Journal of Research in Forestry, Wildlife and Environment 8(4):30–38.

Zúñiga, O., Benavides, J.A., Ospina-Salazar, D.I., Jiménez, C.O. y Gutiérrez, M.A. 2016. Tratamiento magnético de agua de riego y semillas en agricultura. Ingeniería y Competitividad 18(2): 217.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.


Datos de la descarga no disponibles