Plantas de Santa Marta con posible actividad biológica antimicrobiana

  • Víctor Macías-Villamizar Universidad del Magdalena
  • Roxana González-Ascanio Universidad Libre
Palabras clave: metabolitos secundarios, extractos, etnobotánica, antimicrobiano

Resumen

El uso que el hombre ha dado a los productos naturales es diverso, entre ellos erradicar múltiples enfermedades infecciosas; como las ocasionadas,  por ejemplo, por Klebsiella  pneumoniae, Escherichia coli, Neisseria  gonorrhoeae y Staphylococcus aureus (resistentes a los antibióticos); que producen enfermedades agresivas; especialmente en septicemia; por ello la Organización Mundial de la Salud plantea la fitoquímica como alternativa en la búsqueda de antimicrobianos (antibacterianos, antifúngicos y antivirales); y es en ese sentido que planteamos la importancia del artículo en el área de la salud por las múltiples aplicaciones en el campo antimicrobiano, soportado en los resultados de diversos bioensayos; convirtiéndose en una alternativa para la indagación de nuevos compuestos fitofarmacológicos.   

Descargas

Datos de la descarga no disponibles

Referencias bibliográficas

1. Carbono de la Hoz E. Catálogo ilustrado de flora del distrito de Santa Marta, Colombia. Universidad del Magdalena ed2013. https://www.libreriadelau.com/catalogo-ilustrado-de-flora-del-distrito-de-santa-marta-colombia-illustrated-catalogue-of-flora-of-santa-marta-district-colombia-u-del-magdalena-9789589743782-agropecuario/p
2. Cuca-Suárez L, Macías-Villamizar V. Metabolitos secundarios presentes en algunas plantas de Colombia: Universisidad Nacional de Colombia; 2016. 104 p. https://www.uneditorial.com/metabolitos-secundarios-presentes-en-algunas-plantas-de-colombia-quimica.html
3. Valdez Grefa LK. Prácticas etnobotánicas odontológicas de la Comunidad Kichwa Playas de Oro, parroquia Santa Cecilia, cantón Lago Agrio, provincia de Sucumbíos: Quito: Universidad Central del Ecuador; 2017. http://www.dspace.uce.edu.ec/handle/25000/9598
4. Benalcázar ALC, Árias MAC, Ibarra MCB. Efecto antibacteriano del extract o etanólico del botoncillo (ACMELLA REPENS) sobre Porphyromona gingivalis: Estudio in Vitro. Odontología. 2016;18(1):20-5. https://dialnet.unirioja.es/servlet/articulo?codigo=5597619
5. Mariani MJ, Jaimes V, Fernandez D. Efecto bacteriostático del extracto de semillas de cacao (Theobroma cacao L) sobre el crecimiento de Streptococcus mutans in vitro. Odous Cientifica. 2010;11(1):15-22. https://biblat.unam.mx/es/revista/odous-cientifica/articulo/efecto-bacteriostatico-del-extracto-de-semillas-de-cacao-theobroma-cacao-l-sobre-el-crecimiento-de-streptococcus-mutans-in-vitro
6. Barrera Miclín R, Kindelán Barrera R. Utilización de la Medicina Natural y Tradicional en pacientes tratados por Ortodoncia con afecciones de la mucosa oral. Revista Habanera de Ciencias Médicas. 2014;13(3):466-74. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2014000300012
7. Puig Capote E, Rodríguez Gutiérrez GM, Tan Suárez N, Espeso Nápoles N, Barciela Calderón J. La terapia homeopática y su aplicación en la Estomatología. Revista Archivo Médico de Camagüey. 2009;13(1):0-. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02552009000100019
8. Rodríguez Y, Vera L, Moreno K, Montilla J, Guevara C, González R. Conocimiento sobre el uso del Plantago-major como terapia alternativa en lesiones inflamatorias bucales. Revista Venezolana de Investigación Odontológica. 2014;2(2):106-15. http://erevistas.saber.ula.ve/index.php/rvio/article/view/5306
9. Abílio F, Maria V, da Silva Mesquita B, Darly da Silva E, Vilar de Queiroz Carvalho F, de Macêdo A, et al. Actividad antifúngica de productos naturales indicados por vendedores de hierbas (raizeiros) para el tratamiento de la candidiasis oral. Revista Cubana de Estomatología. 2014;51(3):259-69. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0034-75072014000300003
10. Hernández V, Malafronte N, Mora F, Pesca MS, Aquino RP, Mencherini T. Antioxidant and antiangiogenic activity of Astronium graveolens Jacq. leaves. Natural product research. 2014;28(12):917-22. https://www.tandfonline.com/doi/full/10.1080/14786419.2014.889134
11. Gallo MB, Sarachine MJ. Biological activities of lupeol. Int J Biomed Pharm Sci. 2009;3(1):46-66. https://www.researchgate.net/publication/227878150_Biological_Activities_of_Lupeol
12. Scholz E, Heinrich M, Hunkler D. Caffeoylquinic acids and some biological activities of Pluchea symphytifolia. Planta medica. 1994;60(04):360-4. https://www.ncbi.nlm.nih.gov/pubmed/7938272
13. Hernández V, Mora F, Araque M, De Montijo S, Rojas L, Meléndez P, et al. Chemical composition and antibacterial activity of Astronium graveolens JACQ essential oil. Revista latinoamericana de química. 2013;41(2):89-94. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0370-59432013000200002&lng=es&nrm=iso
14. Olugbuyiro JA. Anti-tubercular compounds from Spondias mombin. International Journal of Pure and Applied Sciences and Technology. 2013;19(2):76-87. http://www.ijopaasat.in/yahoo_site_admin/assets/docs/IJPAST-670-V19N2.54230810.pdf
15. Olugbuyiro J, Moody J, Hamann M. Phytosterols from Spondias mombin Linn with antimycobacterial activities. African Journal of Biomedical Research. 2013;16(1):19-24. https://www.ncbi.nlm.nih.gov/pubmed/27818608
16. Corthout J, Pieters L, Claeys M, Geerts S, Vanden Berghe D, Vlietinck A. Antibacterial and molluscicidal phenolic acids from Spondias mombin. Planta medica. 1994;60(5):460-3. https://www.ncbi.nlm.nih.gov/pubmed/7997478
17. Pérez-Portero Y, Suárez F, Camacho-Pozo M, Guzmán BH, Garcia M, Ross A. Actividad de Spondias mombin frente a microorganismos de importancia clínica. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2013;12(4). https://www.blacpma.usach.cl/revista-numero/actividad-de-spondias-mombin-frente-microorganismos-de-importancia-clinica
18. Adediwura F-J, Kio A. Antidiabetic activity of Spondias mombin extract in NIDDM rats. Pharmaceutical Biology. 2009;47(3):215-8. https://www.tandfonline.com/doi/full/10.1080/13880200802462493
19. Silva A, Morais S, Marques M, Lima D, Santos S, Almeida R, et al. Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2011;17(4):406-13. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992011000400007
20. Rabêlo SV, Costa EV, Barison A, Dutra LM, Nunes XP, Tomaz JC, et al. Alkaloids isolated from the leaves of atemoya (Annona cherimola× Annona squamosa). Revista Brasileira de Farmacognosia. 2015;25(4):419-21. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2015000400419
21. Wu Y-C, Hung Y-C, Chang F-R, Cosentino M, Wang H-K, Lee K-H. Identification of ent-16β, 17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from Annona squamosa. Journal of natural products. 1996;59(6):635-7. https://pubs.acs.org/doi/abs/10.1021/np960416j
22. Paulo MdQ, Barbosa-Filho J, Lima EO, Maia RF, de Cassia R, Barbosa B, et al. Antimicrobial activity of benzylisoquinoline alkaloids from Annona salzmanii DC. Journal of ethnopharmacology. 1992;36(1):39-41. https://www.ncbi.nlm.nih.gov/pubmed/1501491
23. Li H-T, Wu H-M, Chen H-L, Liu C-M, Chen C-Y. The pharmacological activities of (−)-anonaine. Molecules. 2013;18(7):8257-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270643/
24. Spasova M, Philipov S, Nikolaeva-Glomb L, Galabov A, Milkova T. Cinnamoyl-and hydroxycinnamoyl amides of glaucine and their antioxidative and antiviral activities. Bioorganic & medicinal chemistry. 2008;16(15):7457-61. https://www.ncbi.nlm.nih.gov/pubmed/18590964
25. Costa EV, Pinheiro MLB, Xavier CM, Silva JR, Amaral ACF, Souza AD, et al. A Pyrimidine-β-carboline and Other Alkaloids from Annona f oetida with Antileishmanial Activity. Journal of natural products. 2006;69(2):292-4. https://pubs.acs.org/doi/abs/10.1021/np050422s
26. Cheng P, Ma Y-b, Yao S-y, Zhang Q, Wang E-j, Yan M-h, et al. Two new alkaloids and active anti-hepatitis B virus constituents from Hypserpa nitida. Bioorganic & medicinal chemistry letters. 2007;17(19):5316-20. https://www.sciencedirect.com/science/article/pii/S0960894X07009766
27. Johns T, Windust A, Jurgens T, Mansor SM. Antimalarial alkaloids isolated from Annona squamosa. Phytopharmacology. 2011;1(3):49-53. http://inforesights.com/phytopharmacology/files/7.pdf
28. Shanker KS, Kanjilal S, Rao B, Kishore KH, Misra S, Prasad R. Isolation and antimicrobial evaluation of isomeric hydroxy ketones in leaf cuticular waxes of Annona squamosa. Phytochemical analysis. 2007;18(1):7. https://www.ncbi.nlm.nih.gov/pubmed/17260693
29. Pandey N, Barve D. Phytochemical and pharmacological review on Annona squamosa Linn. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011;2(4):1404-12. https://www.doc-developpement-durable.org/file/Arbres-Fruitiers/FICHES_ARBRES/attier_pomme-cannelle_Annona-squamosa/Phytochemical%20and%20Pharmacological%20Review%20on%20Annona%20squamosa.pdf
30. Rahman MM, Lopa SS, Sadik G, Islam R, Khondkar P, Alam AK, et al. Antibacterial and cytotoxic compounds from the bark of Cananga odorata. Fitoterapia. 2005;76(7):758-61. https://www.ncbi.nlm.nih.gov/pubmed/16242266
31. Tan LTH, Lee LH, Yin WF, Chan CK, Abdul Kadir H, Chan KG, et al. Traditional uses, phytochemistry, and bioactivities of Cananga odorata (Ylang-Ylang). Evidence-Based Complementary and Alternative Medicine. 2015;2015. https://www.ncbi.nlm.nih.gov/pubmed/26294929
32. Abdel-Kader MS, Wisse J, Evans R, van der Werff H, Kingston DG. Bioactive Iridoids and a New Lignan from Allamanda c athartica and Himatanthus f allax from the Suriname Rainforest. Journal of natural products. 1997;60(12):1294-7. https://www.ncbi.nlm.nih.gov/pubmed/9428163
33. Aponte JC, Vaisberg AJ, Rojas R, Sauvain M, Lewis WH, Lamas G, et al. A multipronged approach to the study of Peruvian ethnomedicinal plants: a legacy of the ICBG-Peru Project. Journal of natural products. 2009;72(3):524-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495650/
34. Karunakaran G, Jagathambal M, Gusev A, Kolesnikov E, Mandal AR, Kuznetsov D. Allamanda cathartica flower's aqueous extract-mediated green synthesis of silver nanoparticles with excellent antioxidant and antibacterial potential for biomedical application. MRS Communications. 2016;6(01):41-6. https://www.cambridge.org/core/journals/mrs-communications/article/allamanda-cathartica-flowers-aqueous-extractmediated-green-synthesis-of-silver-nanoparticles-with-excellent-antioxidant-and-antibacterial-potential-for-biomedical-application/7B177FF624078842BE5970B8FEE7D302
35. Rajamanickam K, Sudha SS. In-vitro antimicrobial activity and in vivo toxicity of Moringa oleifera and Allamanda cathartica against multiple drug resistant clinical pathogens. International Journal of Pharma and Bio Sciences. 2013;4(1):768-75. https://www.researchgate.net/publication/287447544_In-vitro_antimicrobial_activity_and_in-vivo_toxicity_of_Moringa_oleifera_and_Allamanda_cathartica_against_multiple_drug_resistant_clinical_pathogens
36. Hameed A, Nawaz G, Gulzar T. Chemical composition, antioxidant activities and protein profiling of different parts of Allamanda cathartica. Natural product research. 2014;28(22):2066-71. https://www.ncbi.nlm.nih.gov/pubmed/24931146
37. Wong SK, Lim YY, Chan EW. Botany, uses, phytochemistry and pharmacology of selected Apocynaceae species: A review. Pharmacognosy Communications. 2013;3(3):2. http://phcogfirst.com/sites/default/files/Botany,%20uses,%20phytochemistry%20and%20pharmacology%20of.pdf
38. Duarte D, Dolabela M, Salas C, Raslan D, Oliveiras A, Nenninger A, et al. Chemical Characterization and Biological Activity of Macfadyena unguis-cati (Bignoniaceae). Journal of pharmacy and pharmacology. 2000;52(3):347-52. https://www.ncbi.nlm.nih.gov/pubmed/10757425
39. Liu S, Zheng Z, Zheng G, Chen L, Zhong T, Ming Y. A New Flavonoside from the Invasive Plant Macfadyena unguis-cati. Chemistry of Natural Compounds. 2015;51(5):844-6. https://www.semanticscholar.org/paper/A-New-Flavonoside-from-the-Invasive-Plant-Liu-Zheng/0cae9b2c29a81c680f163b63d6754e990bbd7df4
40. Carneiro PF, Maria do Carmo F, Coelho TS, Cavalcanti BC, Pessoa C, de Simone CA, et al. Quinonoid and phenazine compounds: Synthesis and evaluation against H37Rv, rifampicin and isoniazid-resistance strains of Mycobacterium tuberculosis. European journal of medicinal chemistry. 2011;46(9):4521-9. https://www.sciencedirect.com/science/article/pii/S0223523411005393
41. da Silva Júnior EN, de Souza MCB, Fernandes MC, Menna-Barreto RF, Maria do Carmo F, de Assis Lopes F, et al. Synthesis and anti-Trypanosoma cruzi activity of derivatives from nor-lapachones and lapachones. Bioorganic & medicinal chemistry. 2008;16(9):5030-8. https://www.ncbi.nlm.nih.gov/pubmed/18378461
42. da Silva Júnior EN, Guimarães TT, Menna-Barreto RF, Maria do Carmo F, de Simone CA, Pessoa C, et al. The evaluation of quinonoid compounds against Trypanosoma cruzi: Synthesis of imidazolic anthraquinones, nor-β-lapachone derivatives and β-lapachone-based 1, 2, 3-triazoles. Bioorganic & medicinal chemistry. 2010;18(9):3224-30. https://www.ncbi.nlm.nih.gov/pubmed/20378360
43. Aboutabl E, Hashem FA, Sleem A, Maamoon A. Flavonoids, anti-inflammatory activity and cytotoxicity of Macfadyena unguis-cati L. African Journal of Traditional, Complementary and Alternative Medicines. 2008;5(1):18-26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816596/
44. Rahmatullah M, Samarrai W, Jahan R, Rahman S, Sharmin N, Miajee E, et al. An ethnomedicinal, pharmacological and phytochemical review of some Bignoniaceae family plants and a description of Bignoniaceae plants in folk medicinal uses in Bangladesh. Advances in natural and applied sciences. 2010;4(3):236-53. https://scinapse.io/papers/2182480055
45. Meléndez P, Capriles V. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine. 2006;13(4):272-6. https://www.ncbi.nlm.nih.gov/pubmed/16492531
46. Bermúdez A, Velázquez D. Etnobotánica médica de una comunidad campesina del estado Trujillo, Venezuela: un estudio preliminar usando técnicas cuantitativas. Revista de la Facultad de Farmacia 2002;44:2-6. http://www.saber.ula.ve/bitstream/handle/123456789/23797/;jsessionid=59B32181E610619B8EEE3E61A3373304?sequence=1
47. Raffauf RF, Menachery MD, Le Quesne PW, Arnold EV, Clardy J. Antitumor plants. 11. Diterpenoid and flavonoid constituents of Bromelia pinguin L. The Journal of Organic Chemistry. 1981;46(6):1094-8. https://pubs.acs.org/doi/abs/10.1021/jo00319a011
48. Chen J-J, Wu H-M, Peng C-F, Chen I-S, Chu S-D. seco-Abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from Callicarpa pilosissima. Journal of natural products. 2009;72(2):223-8. https://www.ncbi.nlm.nih.gov/pubmed/19193025
49. Pío-León JF, López-Angulo G, Paredes-López O, de Jesús Uribe-Beltrán M, Díaz-Camacho SP, Delgado-Vargas F. Physicochemical, nutritional and antibacterial characteristics of the fruit of Bromelia pinguin L. Plant foods for human nutrition. 2009;64(3):181-7. https://www.ncbi.nlm.nih.gov/pubmed/19536651
50. Camacho-Hernández I, Chávez-Velázquez J, Uribe-Beltrán M, Rı́os-Morgan A, Delgado-Vargas F. Antifungal activity of fruit pulp extract from Bromelia pinguin. Fitoterapia. 2002;73(5):411-3. https://www.ncbi.nlm.nih.gov/pubmed/12165338
51. Álvarez ÁL, Habtemariam S, Parra F. Inhibitory effects of lupene-derived pentacyclic triterpenoids from Bursera simaruba on HSV-1 and HSV-2 in vitro replication. Natural product research. 2015;29(24):2322-7. https://www.ncbi.nlm.nih.gov/pubmed/25674932
52. Noguera B, Dı́az E, Garcı́a M, San Feliciano A, López-Perez J, Israel A. Anti-inflammatory activity of leaf extract and fractions of Bursera simaruba (L.) Sarg (Burseraceae). Journal of ethnopharmacology. 2004;92(1):129-33. https://www.ncbi.nlm.nih.gov/pubmed/15099859
53. Gustafson KR, Munro MH, Blunt JW, Cardellina JH, McMahon JB, Gulakowski RJ, et al. HIV inhibitory natural products. 3. Diterpenes from homalantusacuminatus and chrysobalanusicaco. Tetrahedron. 1991;47(26):4547-54. https://www.sciencedirect.com/science/article/pii/S0040402001864619
54. Castilho R, Kaplan MA. Phytochemical study and antimicrobial activity of Chrysobalanus icaco. Chemistry of Natural Compounds. 2011;47(3):436-7. https://link.springer.com/article/10.1007/s10600-011-9953-x
55. Silva JPB, Peres ARMN, Paixão TP, Silva ASB, Baetas AC, Barbosa WLR, et al. Antifungal activity of hydroalcoholic extract of Chrysobalanus icaco against oral clinical isolates of Candida Species. Pharmacognosy research. 2017;9(1):96. https://www.ncbi.nlm.nih.gov/pubmed/28250661
56. Gustafson KR, Cardellina JH, McMahon JB, Gulakowski RJ, Ishitoya J, Szallasi Z, et al. A nonpromoting phorbol from the samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. Journal of Medicinal Chemistry. 1992;35(11):1978-86. https://www.ncbi.nlm.nih.gov/pubmed/1597853
57. Neto FC, Pilon AC, da Silva Bolzani V, Castro-Gamboa I. Chrysobalanaceae: secondary metabolites, ethnopharmacology and pharmacological potential. Phytochemistry reviews. 2013;12(1):121-46. https://link.springer.com/article/10.1007/s11101-012-9259-z
58. Pan L-L, Fang P-L, Zhang X-J, Ni W, Li L, Yang L-M, et al. Tigliane-type diterpenoid glycosides from Euphorbia fischeriana. Journal of natural products. 2011;74(6):1508-12. https://www.researchgate.net/publication/51090670_Tigliane-Type_Diterpenoid_Glycosides_from_Euphorbia_fischeriana
59. Nothias-Scaglia L-F, Pannecouque C, Renucci F, Delang L, Neyts J, Roussi F, et al. Antiviral activity of diterpene esters on chikungunya virus and HIV replication. Journal of natural products. 2015;78(6):1277-83. https://www.ncbi.nlm.nih.gov/pubmed/25970561
60. Bourjot Ml, Delang L, Nguyen VH, Neyts J, Guéritte Fo, Leyssen P, et al. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of chikungunya virus replication. Journal of natural products. 2012;75(12):2183-7. https://www.ncbi.nlm.nih.gov/pubmed/23215460
61. Brown HJ, McBride WH, Zack JA, Sun R. Prostratin and bortezomib are novel inducers of latent Kaposi's sarcoma-associated herpesvirus. Antiviral therapy. 2005;10(6):745. https://www.ncbi.nlm.nih.gov/pubmed/16218174
62. Bhakat S, Karubiu W, Jayaprakash V, Soliman ME. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses. European journal of medicinal chemistry. 2014;87:677-702. https://www.ncbi.nlm.nih.gov/pubmed/25305334
63. Jeong HJ, Ryu YB, Park S-J, Kim JH, Kwon H-J, Kim JH, et al. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic & medicinal chemistry. 2009;17(19):6816-23. https://www.ncbi.nlm.nih.gov/pubmed/19729316
64. Liu A-L, Wang H-D, Lee SM, Wang Y-T, Du G-H. Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorganic & medicinal chemistry. 2008;16(15):7141-7. https://www.ncbi.nlm.nih.gov/pubmed/18640042
65. Fernandez LS, Jobling MF, Andrews KT, Avery VM. Antimalarial activity of natural product extracts from Papua New Guinean and Australian plants against Plasmodium falciparum. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2008;22(10):1409-12. https://www.ncbi.nlm.nih.gov/pubmed/18693292
66. Ayoub NA. A trimethoxyellagic acid glucuronide from Conocarpus erectus leaves: Isolation, characterization and assay of antioxidant capacity. Pharmaceutical Biology. 2010;48(3):328-32. https://www.ncbi.nlm.nih.gov/pubmed/20645821
67. Helgren TR, Sciotti RJ, Lee P, Duffy S, Avery VM, Igbinoba O, et al. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs. Bioorganic & medicinal chemistry letters. 2015;25(2):327-32. https://www.ncbi.nlm.nih.gov/pubmed/25488841
68. Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R. Inhibition of Plasmodium f alciparum Fatty Acid Biosynthesis: Evaluation of FabG, FabZ, and FabI as Drug Targets for Flavonoids. Journal of Medicinal Chemistry. 2006;49(11):3345-53. https://www.ncbi.nlm.nih.gov/pubmed/16722653
69. Hu C-Q, Chen K, Shi Q, Kilkuskie RE, Cheng Y-C, Lee K-H. Anti-AIDS agents, 10. Acacetin-7-o-β-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. Journal of natural products. 1994;57(1):42-51. https://www.ncbi.nlm.nih.gov/pubmed/8158164
70. Liu M-M, Zhou L, He P-L, Zhang Y-N, Zhou J-Y, Shen Q, et al. Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy. European journal of medicinal chemistry. 2012;52:33-43. https://www.ncbi.nlm.nih.gov/pubmed/22445328
71. Abdel-Hameed E-SS, Bazaid SA, Shohayeb MM, El-Sayed MM. Phytochemical Studies and Evaluation of Antioxidant, Anticancer and Antimicrobial Properties of Conocarpus erectus L. Growing in Taif, Saudi Arabia. 2012. https://pdfs.semanticscholar.org/34dd/f8ae0a7d24b7a7682240d2201782a4995bfc.pdf
72. Shohayeb M, Hameed E, Bazaid S. Antimicrobial activity of tannins and extracts of different parts of Conocarpus erectus L. International Journal of Pharma and Bio Sciences. 2013;3:544-53. http://ijpbs.com/ijpbsadmin/upload/ijpbs_51dbb691221f1.pdf
73. Ajam SMS, Salleh B, Al-Khalil S, Sulaiman SF, editors. Antimicrobial activity of spermine alkaloids from Samanea saman against microbes associated with sick buildings. International Conference on Environment, Chemistry and Biology; 2012. http://www.ipcbee.com/vol49/030-ICECB2012-E1010.pdf
74. Thippeswamy S, Mohana DC, Abhishek RU, Manjunath K. Evaluation of Antimicrobial and Antioxidant Properties of Pithecolobine Isolated from Albizia saman. Journal of Herbs, Spices & Medicinal Plants. 2015;21(4):438-46. https://www.tandfonline.com/doi/abs/10.1080/10496475.2014.996695
75. Azhar I, Hasan MM, Mazhar F, Ali M. Some biological evaluations on Samanea saman. Pakistan Journal of Pharmacology. 2009;26:47-53. https://www.researchgate.net/publication/299416272_Some_Biological_evaluation_on_Samanea_saman
76. Jagessar RC, Mars A, Gomathinayagam S. Selective Antimicrobial properties of Leaf extract of Samanea saman against Candida albicans Staphylococcus aureus and Escherichia coli using several microbial methods. Journal of American Science. 2011;7(3):108-19. https://www.semanticscholar.org/paper/Selective-Antimicrobial-properties-of-Leaf-extract-Jagessar-Gomathinayagam/ae1eeb92d69520f3daddcc39c1fc6d98d017aef8
77. Vinodhini S, Rajeswari V D. Review on Ethnomedical Uses, Pharmacological Activity and Phytochemical Constituents of Samanea Saman(jacq.) Merr. Rain Tree. Pharmacognosy Journal 2018;10(2):202-9. https://pdfs.semanticscholar.org/9fe2/75ce7e5281872abf98896a7322893045f5d5.pdf
78. Thippeswamy S, Mohana DC, Abhishek RU, Manjunath K. Efficacy of bioactive compounds isolated from Albizia amara and Albizia saman as source of antifungal and antiaflatoxigenic agents. Journal für Verbraucherschutz und Lebensmittelsicherheit. 2013;8(4):297-305. https://link.springer.com/article/10.1007/s00003-013-0839-7
79. Kokila K, Elavarasan N, Sujatha V. Isolation, Identification and Biological Applications of Anthraquinone (Methylated Rhein) from Albizia saman Seed Extracts. Journal of Food Processing and Preservation. 2017;41(1). https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.12761
80. Mar W, Tan GT, Cordell GA, Pezzuto JM, Jurcic K, Offermann F, et al. Biological activity of novel macrocyclic alkaloids (budmunchiamines) from Albizia amara detected on the basis of interaction with DNA. Journal of natural products. 1991;54(6):1531-42. https://www.ncbi.nlm.nih.gov/pubmed/1725878
81. Pezzuto JM, Mar W, Lin L-Z, Cordell GA, Neszmélyi A, Wagner H. Budmunchiamines D–I from Albizia amara. Phytochemistry. 1992;31(5):1795-800. https://www.sciencedirect.com/science/article/abs/pii/003194229283150W
82. Indravathi G, Reddy RS, Babu PS. Albizia amara-A Potential Medicinal Plant: A. International Journal of Science and Research 2016;5(3):621-7. https://www.ijsr.net/archive/v5i3/NOV161939.pdf
83. McPherson DD, Cordell GA, Soejarto DD, Pezzuto JM, Fong HHS. Peltogynoids and homoisoflavonoids from Caesalpinia pulcherrima. Phytochemistry. 1983;22(12):2835-8. https://www.sciencedirect.com/science/article/abs/pii/S0031942200977082
84. Pranithanchai W, Karalai C, Ponglimanont C, Subhadhirasakul S, Chantrapromma K. Cassane diterpenoids from the stem of Caesalpinia pulcherrima. Phytochemistry. 2009;70(2):300-4. https://www.sciencedirect.com/science/article/abs/pii/S0031942208005955
85. Liu Y, Harinantenaina L, Brodie PJ, Bowman JD, Cassera MB, Slebodnick C, et al. Bioactive compounds from Stuhlmannia moavi from the Madagascar dry forest. Bioorganic & medicinal chemistry. 2013;21(24):7591-4. https://www.ncbi.nlm.nih.gov/pubmed/24239390
86. Kwon H-J, Kim H-H, Ryu YB, Kim JH, Jeong HJ, Lee S-W, et al. In vitro anti-rotavirus activity of polyphenol compounds isolated from the roots of Glycyrrhizauralensis. Bioorganic & medicinal chemistry. 2010;18(21):7668-74. https://www.sciencedirect.com/science/article/pii/S0968089610007376
87. Xie Y, Huang B, Yu K, Shi F, Liu T, Xu W. Caffeic acid derivatives: a new type of influenza neuraminidase inhibitors. Bioorganic & medicinal chemistry letters. 2013;23(12):3556-60. https://www.ncbi.nlm.nih.gov/pubmed/23664211
88. Zhu Y, Zhang P, Yu H, Li J, Wang M-W, Zhao W. Anti-Helicobacter pylori and thrombin inhibitory components from Chinese dragon’s blood, Dracaena cochinchinensis. Journal of natural products. 2007;70(10):1570-7. https://www.ncbi.nlm.nih.gov/pubmed/17883259
89. Wen C-C, Kuo Y-H, Jan J-T, Liang P-H, Wang S-Y, Liu H-G, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry. 2007;50(17):4087-95. https://www.ncbi.nlm.nih.gov/pubmed/17663539
90. Zhang Y, Liu Y-B, Li Y, Ma S-G, Li L, Qu J, et al. Sesquiterpenes and alkaloids from the roots of Alangium chinense. Journal of natural products. 2013;76(6):1058-63. https://www.ncbi.nlm.nih.gov/pubmed/23734721
91. Zanin JLB, De Carvalho BA, Salles Martineli P, Dos Santos MH, Lago JHG, Sartorelli P, et al. The genus Caesalpinia L.(Caesalpiniaceae): phytochemical and pharmacological characteristics. Molecules. 2012;17(7):7887-902. https://www.ncbi.nlm.nih.gov/pubmed/22751225
92. Asati N, Yadava R. Antibacterial activity of a triterpenoid saponin from the stems of Caesalpinia pulcherrima Linn. Natural product research. 2018;32(5):499-507. https://www.ncbi.nlm.nih.gov/pubmed/28423926
93. Erharuyi O, Adhikari A, Falodun A, Jabeen A, Imad R, Ammad M, et al. Cytotoxic, anti-inflammatory, and leishmanicidal activities of diterpenes isolated from the roots of Caesalpinia pulcherrima. Planta medica. 2017;83(01/02):104-10. https://www.ncbi.nlm.nih.gov/pubmed/27340793
94. Chiang L, Chiang W, Liu M, Lin C. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. Journal of Antimicrobial Chemotherapy. 2003;52(2):194-8. https://www.ncbi.nlm.nih.gov/pubmed/12837746
95. Chanda S, Baravalia Y. Brine shrimp cytotoxicity of Caesalpinia pulcherrima aerial parts, antimicrobial activity and characterisation of isolated active fractions. Natural product research. 2011;25(20):1955-64. https://www.ncbi.nlm.nih.gov/pubmed/21762031
96. Sudhakar M, Rao CV, Rao P, Raju D, Venkateswarlu Y. Antimicrobial activity of Caesalpinia pulcherrima, Euphorbia hirta and Asystasia gangeticum. Fitoterapia. 2006;77(5):378-80. https://www.ncbi.nlm.nih.gov/pubmed/16730921
97. Rao YK, Fang S-H, Tzeng Y-M. Anti-inflammatory activities of flavonoids isolated from Caesalpinia pulcherrima. Journal of ethnopharmacology. 2005;100(3):249-53. https://www.ncbi.nlm.nih.gov/pubmed/15893896
98. Azab SS, Abdel-Daim M, Eldahshan OA. Phytochemical, cytotoxic, hepatoprotective and antioxidant properties of Delonix regia leaves extract. Medicinal Chemistry Research. 2013;22(9):4269-77. https://link.springer.com/article/10.1007/s00044-012-0420-4
99. Ragasa CY, Hofilena JG. Antimicrobial coumarin derivative from Delonix regia. Manila Journal of Science. 2011;7(1):7-11. https://www.manilajournalofscience.com.ph/download/2-MJS01142011-Ragasa.Hofilena-copyedited.pdf
100. Marín C, Ramírez-Macías I, López-Céspedes A, Olmo F, Villegas N, Díaz JG, et al. In vitro and in vivo trypanocidal activity of flavonoids from Delphinium staphisagria against Chagas disease. Journal of natural products. 2011;74(4):744-50. https://www.ncbi.nlm.nih.gov/pubmed/21466157
101. Yang W-Y, Won TH, Ahn C-H, Lee S-H, Yang H-C, Shin J, et al. Streptococcus mutans sortase A inhibitory metabolites from the flowers of Sophora japonica. Bioorganic & medicinal chemistry letters. 2015;25(7):1394-7. https://www.ncbi.nlm.nih.gov/pubmed/25746812
102. Shabir G, Anwar F, Sultana B, Khalid ZM, Afzal M, Khan QM, et al. Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules. 2011;16(9):7302-19. https://www.ncbi.nlm.nih.gov/pubmed/22143540
103. Singh S, Kumar SN. A review: introduction to genus Delonix. world journal of pharmacy and pharmaceutical sciences. 2014;3(6):2042-55. file:///C:/Users/7/Downloads/article_wjpps_1402570256.pdf
104. Grosvenor PW, Gray DO. Colutequinone and colutehydroquinone, antifungal isoflavonoids from Colutea arborescens. Phytochemistry. 1996;43(2):377-80. https://www.sciencedirect.com/science/article/abs/pii/0031942296002609 77-80.
105. Grosvenor PW, Gray DO. Coluteol and colutequinone B, more antifungal isoflavonoids from Colutea arborescens. Journal of natural products. 1998;61(1):99-101. https://www.ncbi.nlm.nih.gov/pubmed/9548836
106. Jantová S, Nagy M, Ruz̆eková Ĺ, Grancai D. Antibacterial activity of plant extracts from the families Fabaceae, Oleaceae, Philadelphaceae, Rosaceae and Staphyleaceae. Phytotherapy Research. 2000;14(8):601-3. https://www.ncbi.nlm.nih.gov/pubmed/11113995
107. Ndjateu FS, Tsafack RB, Nganou BK, Awouafack MD, Wabo HK, Tene M, et al. Antimicrobial and antioxidant activities of extracts and ten compounds from three Cameroonian medicinal plants: Dissotis perkinsiae (Melastomaceae), Adenocarpus mannii (Fabaceae) and Barteria fistulosa (Passifloraceae). South African Journal of Botany. 2014;91:37-42. https://www.sciencedirect.com/science/article/pii/S0254629913004626
108. Hoet S, Pieters L, Muccioli GG, Habib-Jiwan J-L, Opperdoes FR, Quetin-Leclercq J. Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. Journal of natural products. 2007;70(8):1360-3. https://www.ncbi.nlm.nih.gov/pubmed/17637068
109. Yu F, Wang Q, Zhang Z, Peng Y, Qiu Y, Shi Y, et al. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors. Journal of Medicinal Chemistry. 2013;56(11):4300-19. https://www.ncbi.nlm.nih.gov/pubmed/23662817
110. Kashiwada Y, Nagao T, Hashimoto A, Ikeshiro Y, Okabe H, Cosentino LM, et al. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives. Journal of natural products. 2000;63(12):1619-22. https://www.ncbi.nlm.nih.gov/pubmed/11141100
111. Song G, Shen X, Li S, Li Y, Si H, Fan J, et al. Structure-activity relationships of 3-O-β-chacotriosyl oleanane-type triterpenoids as potential H5N1 entry inhibitors. European journal of medicinal chemistry. 2016;119:109-21. https://www.ncbi.nlm.nih.gov/pubmed/27153348
112. Nganou BK, Tane P, Nchiozem A, Selvaraj J, Selvaraj A, Nanjan C. Identification of Human NMPrtase Inhibitors Adenocarpus Mannii; An In-Silico Approach. Journal of Pharmaceutical Sciences and Research. 2017;9(2):95. https://www.jpsr.pharmainfo.in/Documents/Volumes/vol9Issue02/jpsr09021704.pdf
113. Rodríguez-Hernández D, Barbosa LC, Demuner AJ, de Almeida RM, Fujiwara RT, Ferreira SR. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. European journal of medicinal chemistry. 2016;124:153-9. https://www.ncbi.nlm.nih.gov/pubmed/27569196
114. Felix M, Firmin B, Molloumba P, Ewaméla G. La pharmacopée des peuples Pygmées du nord-ouest du Congo Brazzaville pour les affections bucco-dentaires. Actes Société française d'histoire de l'art dentaire. 2011;16:97-101. https://www.biusante.parisdescartes.fr/sfhad/vol16/2011_22.pdf
115. Erhenhi A, Obadoni B. Known medicinal and aphrodisiac plants of Urhonigbe forest reserve, Edo State, Nigeria. Journal of Medicinal Plants Research. 2015;3(4):101-06. http://www.plantsjournal.com/archives/?year=2015&vol=3&issue=4&part=B&ArticleId=220
Publicado
2019-08-15
Cómo citar
Macías-Villamizar, V., & González-Ascanio, R. (2019). Plantas de Santa Marta con posible actividad biológica antimicrobiana. Duazary, 16(2). https://doi.org/10.21676/2389783X.3161
Sección
Artículo de revisión